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In the automotive industry, a new body shop produc-
tion-line needs to be set up for almost every new car
model. Due to the relatively short product life cycles,
the planning process of body shops can almost be re-
garded as continuous. A main problem is to find an
efficient layout fulfilling the desired production rate
which is characterized by small buffer sizes and
optimized cycle times. Often, the optimization of a
new body shop is carried out manually, possibly sup-
ported by a simulation model to analyze the impact of
different cycle times and buffer sizes. In this paper, we
present a mathematical formulation and an automated
optimization approach for this planning problem. The
optimization modules, which have a direct interface to
the underlying simulation model, are based on
metaheuristics, such as genetic algorithms and simu-
lated annealing. Here, the main task lies in comparing
the manual body-in-white configuration with metaheu-
ristic-based optimization approaches. For an evaluation
of the potentials of our approach, a case study was car-
ried out in collaboration with a German car manu-
facturer.

Keywords:  Body shop design, automotive indus-
try, simulation-based optimization, genetic algo-
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1. Introduction
Within the car body shop of an automotive plant, the
body-in-white is assembled from pre-formed pieces of
metal. Here, up to one hundred or even more welding
robots and various other equipment are needed to
complete the body-in-white before it is conveyed to
the next step of the production process. Since the
body-in-white of a new model is typically signifi-
cantly different from the previous type of car, manu-
facturers have to design a new body shop for almost
each new model. At the same time, product life cycles
in the automotive industry become continuously
shorter and the investments for the equipment some-
times exceed one hundred million dollars. Of course,
the amount of money spent on equipment mainly de-
pends on the flexibility of the overall manufacturing
system, but both the efficiency of such planning pro-
cesses and the quality of the final design are also es-
sential for a company’s success.

In the early conceptual design, being among the
first steps of the planning processes, the shop is di-
vided into 12 to 18 different blocks, each representing
a welding area covering numerous welding opera-
tions in different stations. To decouple the production
process, buffers are usually introduced between two
subsequent blocks forming a structure of blocks and
buffers. Here, a converting topology can be observed,
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as the assemblies and subassemblies coming from cer-
tain blocks meet in succeeding areas. For instance, the
car underbody, the roof and the side frames are as-
sembled in a so-called framing line. The structure of
the body shop considered in the case study is shown
in Figure 1.

Over the last couple of years it has become state-of-
the-art to support the early stages of the conceptual
design with simulation models using commercial
tools like Automod, SIMPLE++, or Witness [1-4]. The
optimization of buffer sizes and cycle times, while
maintaining a demanded production rate of the body
shop, are well-known applications of discrete event
simulation studies [3]. However, simulation does not
improve a given solution by itself. Instead, it can only
be regarded as an efficient tool to analyze a given
solution.

Concerning the optimization of a body shop con-
cept, two parameters describing each block are of in-
terest: the cycle time, i.e., the time for completing one
cycle of operations within the block, and the availabil-
ity of the block. Note that achieving long cycle times
and maintaining a desired production rate is impor-
tant for the next step within the planning process,
where the blocks are designed in detail and relatively
long cycle times may allow a reduction of necessary
resources, e.g., the number of robots used for the
same activities.

The search for a good solution (good in terms of
small buffers and long cycle times) is usually con-
ducted manually starting with solutions based on
analytical calculations and experiences of the plan-
ning engineers. Subsequently, these solutions are it-
eratively improved by changing buffer sizes and cycle
times systematically and conducting a simulation ex-
periment for each set of parameters. However, the
growing number of concept studies puts a constant
pressure on all car manufacturers to increase the qual-
ity and the efficiency of the planning processes. In this
context, the automation of this optimization process

may provide better results, even though it is difficult
to find applications of simulation-based optimization
in the automotive industry in the related literature [5].

But the successful application of simulation-based
optimization to other real world problems, along with
the availability of commercial packages, has led to the
idea of adapting these methods for the automotive
body shop design problem. The aim of this paper is to
test and evaluate the combination of body shop simu-
lation models and modern optimization methods, es-
pecially metaheuristics as genetic algorithms and
simulated annealing.

To exemplify the potentials of our approach, a com-
prehensive case study has been undertaken at the
BMW AG, Munich. Here, existing simulation models
of an already manually planned body shop were com-
bined with two available optimization packages of-
fered by vendors of simulation tools, the Witness-
Optimizer (a simulated annealing-tool) by Lanner
Group and SIMPLE/GA (a genetic algorithm-compo-
nent) by Tecnomatix.

In the following section, we discuss the body shop
design problem in greater detail. Then, we present
our approach of combining metaheuristics and simu-
lation models, as it has been developed and tested for
the presented case study at BMW. Here, we also give
a short review of similar models and metaheuristic-
based solution procedures proposed in the literature.
In Section 4, we discuss the experiments performed
and some computational results. Section 5 provides
some conclusions and directions for further research.

2. Problem Description
The production of a body-in-white follows a scheme
that is almost the same throughout the automotive
industry. The main steps of the production process
differ only slightly between different manufacturers
and car models. Generally, a given number m of
blocks are part of the body shop concept, where
manual labor and robot processes are organized. Af-

Figure 1. Conceptual design of a car body shop
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ter the elements of the underbody (four subassemblies
in our example, cf. Fig. 1) have been produced in the
respective blocks, they are combined and welded in
the following two blocks. Then, the side frames and
the roof are attached to the underbody forming the
body frame. In our example, a paint bar is fixed to the
body frame in the next block. The paint bar supports
the body transportation inside the paint shop, but it is
not part of the completed car and is removed again
later in the assembly process. Afterwards, brazing
and grinding activities are carried out. In the finish
area, the doors, the trunklid, and the hatch-back are
attached. The finished body-in-white then leaves the
body shop and is conveyed to the paint shop.

Major problems in the production process are
breakdowns that occur randomly in the blocks, e.g.,
due to robot failures. The time of such breakdowns
disperses strongly in the real-world. The mean time to
repair (MTTR) and the mean time between failures
(MTBF) define the availability of each block s with s ∈
{1, ..., m}:

  
Availabilitys

MTBFs

MTBFs MTTRs
=

+

To avoid a breakdown in one area that would lead
to a stop of production in other areas, buffers are in-
troduced to de-couple the blocks. However, large
buffers do have several disadvantages [6]. Consider-
able investments are necessary to install buffer space
in an automotive plant. These investments are even
outnumbered by the costs for day-by-day operation
and maintenance of the buffers. Furthermore, buffers
require space and they enlarge the overall cycle time of
the production. Thus, one objective of the body shop
design is to minimize buffer sizes.

In a highly automated system, like a car body shop,
cycle times might be expected to be constant, but they
vary from block to block. Note that the cycle time in
this context is defined as the processing time to finish
a series of operations within one block and not as the
time of the overall production process (overall cycle
time). For the latter, no optimization is possible as the
activities cannot be organized in a different block
structure due to technical restrictions.

A theoretical upper bound   Ts
max  for the cycle time

of block s is given by the availability and by the re-
quired production rate of the shop:

Ts
max ProductionTime Availabilitys

ProductionRate
=

×

A second goal of the conceptual design is to deter-
mine a cycle time close to this upper bound for each
block, as it leads to the largest possible time to orga-
nize the work within the block in the subsequent step

of the planning process. Here, a value close to   Ts
max

allows the engineers a relatively high degree of free-

dom for the detailed design of block s, possibly reduc-
ing the amount of equipment – and, along with it, the
necessary investments – needed for finishing all ac-
tivities within the cycle time. If, for example, the body
shop is designed to produce 400 units per day within
a production time of 1000 minutes and assuming an
availability of 90% for the framing area, we obtain

  
TFraming

max
 = 135 seconds.

Another cycle time-related target is to obtain (al-
most) identical cycle times in all blocks. Such bal-
anced cycle times are supposed to have a positive ef-
fect on buffer sizes, i.e., the smaller the variance of the
cycle times, the less buffer space is expected to be
needed.

Based on these considerations, the body shop de-
sign problem (BSDP) can be formulated as a multi-
objective optimization problem:

• Minimize the overall number of buffer spaces
• Maximize the cycle times for the various
   welding blocks
• Minimize the deviation of the cycle times, i.e.,
   smooth the cycle times of the welding blocks
• Subject to fulfilling a daily rate of N car bodies to
   be produced (at an average).

Note that there are situations where the above objec-
tives are of conflicting nature. For instance, in case of
different availabilities for the blocks, the third objec-
tive is in conflict with the aim of having the longest
possible cycle time for each block.

Any solution procedure for the BSDP has to cope
with the different objectives. The idea of associating
costs with buffer space and cycle times is usually re-
jected by body shop experts. It is almost impossible to
determine cycle time-dependent cost functions that
are valid for the great variety of welding sections
within one body shop – not to mention the welding
sections in different body shops. However, as the
metaheuristics under consideration are designed to
determine the quality of a solution based on a single
value, an objective function that combines cycle times
and buffers sizes is introduced in this paper. For this
purpose, the maximization of cycle times is trans-
formed into minimizing the difference between the
cycle time of each welding block s and its upper

bound   Ts
max .

Given a vector   pg  with n components (buffer sizes),

a vector   tz  with m components (cycle times), an objec-
tive function F comprising the three objectives given
above and a function d to calculate the daily produc-
tion rate of the body shop, we can formulate the BSDP
as:

Minimize   z F(pg, tz)=

subject to   d(pg, tz) N=
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with   pg Z
n

, tz R
m

, N Z∈ + ∈ + ∈ +

Besides the difficulties in defining an appropriate
objective function F, problems also occur in determin-

ing the daily output   d(pg, tz) , as d strongly depends

on stochastic variables due to random down times
within the welding sections. Thus, a solution proce-
dure for the BSDP needs an appropriate component to
calculate d and an appropriate procedure to minimize
F. The following section will discuss different ap-
proaches for both tasks.

3. Solution Procedure and Related Research

Queuing theory [7], as well as simulation modeling,
may be applied to calculate the daily output d. Since
simulation as a tool is widespread in the automotive
industry, it is obviously very convenient to use a
simulation model to compute d even though simula-
tion is rather costly in terms of performance – as each
evaluation of the objective function requires (at least)
one simulation run [8]. Nonetheless, we choose a
simulation approach for our solution procedure,
mainly because the simulation models to calculate d
were already given prior to the study. One of the two
simulation models of our example was built using the
simulation tool SIMPLE++. The animation layout,
which corresponds to the block and buffer structure
described above (cf. Figure 1), is shown in Figure 2.

A common approach to solve the BSDP is (manu-
ally conducted) local search. It can be described as
changing a given solution (a parameter setting)
stepwise (usually varying only one parameter at a
time), and to evaluate the new solution, in our case by
executing an entire simulation experiment. This can
be repeatedly done until no further improvement can
be achieved. However, using such a search technique
will often end in a local optimum, that is, the best

overall solution has not necessarily been found (cf.
Fig. 3). To overcome local optima (and to find the glo-
bal one) metaheuristics can be applied. These are de-
signed to guide local search heuristics in the search
process. In this context, simulation-based optimiza-
tion approaches that include metaheuristics have also
been proposed [9-12].

In the field of metaheuristics, genetic algorithms
have empirically proven to be a very efficient ap-
proach to control a simulation-based optimization
[13]. Genetic algorithms, initially presented by Hol-
land [14], can be understood as an intelligent exploita-
tion of random search [12] and belong to the group of
evolutionary algorithms. The name genetic algorithm
(GA) is derived from biology, where genetic struc-
tures of chromosomes go through an assumed optimi-
zation process of selective breeding. A chromosome
consists of genes (variables), e.g., the buffers under
consideration. An individual or solution is defined by
a couple of chromosomes. It is assumed that for each
individual, there exists a fitness value which deter-
mines the chance for this particular individual to sur-
vive and create offspring within a population of indi-
viduals. As the size of a population is limited in some
way, individuals having a higher fitness are more
likely to survive and create offspring. Through a
(simulated) evolutionary process of selective breed-
ing, which is based on the principle of survival of the
fittest, the average fitness of a population is supposed
to increase from generation to generation leading to
an optimum (that is still likely to be a local one). Off-
spring are created by combining individuals, which is
simulated by crossover operators. Another operator
adopted from biology is the mutation operator which
simulates random changes of variable values, main-
taining a certain diversity of chromosomes within a
given population.

Another metaheuristic under consideration in this
paper is simulated annealing (SA). Instead of creating

Figure 2. Simple simulation model of a car body shop concept
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a population of individuals that are combined to cre-
ate new, hopefully better solutions, only one solution
is considered at each iteration. This solution is
changed locally. After each computation of a new so-
lution, it is decided whether the new solution should
be accepted, even if the solution quality is worse than
the one of the original solution. The probability for
accepting worse solutions is based on the time the al-
gorithm has been processing (using a cooling table),
thereby expecting a convergence to a global optimum.

Combined with a simulation model, GAs have been
applied to optimize, e.g., the production rate of a
board manufacturing process at a Hewlett Packard
plant [13]. The system consists of 21 coupled blocks
with some of them working in parallel. A mix of 6 to
14 different types of boards is produced and some
types do not have to be operated in all blocks. The
cycle times of three within the 21 blocks have been
optimized with each cycle time having a range of 32
different values. GAs find the global optimum that
was previously calculated using complete enumera-
tion within 15 generations of 30 individuals.

Similar experiences in the field of simulation-based
optimization have been obtained, e.g., for generic pro-
duction systems [15], a bicycle plant [16], industrial
robots [17], as well as automated guided vehicles [18].
Other studies consider a combination of discrete
event simulation and altered GAs, e.g., a hybrid GA
to tackle production planning problems [19] and di-
verse evolutionary algorithms to optimize a simple
sample inventory system, to minimize the inventory

of a microwave oven production system, or to opti-
mize a flexible assembly cell with an accumulating
transfer system [20-21,9]. Similar approaches concen-
trate on evolutionary algorithms and an extension of a
polyeder approach (so-called complex strategy) to im-
prove a large scale assembly line [22], or even a com-
bination of these two metaheuristics in a simulation
model of a chemical plant [23]. Additionally, some
work has been conducted to optimize production sys-
tems with similar characteristics to a body shop (ma-
chinery with random breakdowns and buffers to de-
couple the machines) using simulation and
(approximative) analytical methods [24-25], or to ex-
ploit other metaheuristics for simulation-based opti-
mization [27-29].

The interaction between any optimization module
and a simulation model can be described as an itera-
tive process: Each solution computed by the op-
timization module is passed to a control module
within the simulation model, e.g., a simple text file
using a file interface of the simulation package used.
This control module sets the model parameters ac-
cording to the data represented in the solution and
starts the simulation run. After the simulation run is
finished, a second control is invoked that calculates
the fitness of the individual or the solution quality,
respectively, by examining the experimental results.
Based on these results, the next iteration is carried out
by the optimization module under consideration.

In order to evaluate the solution quality, a function
is needed that represents the objectives of the BSDP as

Figure 3.  Example for local and global optima
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discussed in Section 2. Since the GA- and SA-imple-
mentations under consideration in this paper do not
offer possibilities to check the feasibility of individu-
als, the corresponding constraint needs to become
part of the fitness function. This function can be mod-
eled as a sum of weighted terms [22], each term repre-
senting an objective or a constraint. The following fit-
ness function f to be minimized was used for the
BSDP:

  f(pg, tz, d(pg, tz))  = 
  
W1 pg

ii 1

n
W2 (Ts

max
tzs )

s 1

m
⋅

=
∑ + ⋅ −

=
∑ +

  
W3

1

m 1
(tz

j
tz)

2

j 1

m
g(d(pg, tz), N)⋅

−
⋅ −

=
∑ +

The first term punishes growing buffer sizes, the sec-
ond a deviation of the cycle times from the respective
upper bound, whereas the third term increases ac-
cording to the variance of the cycle times. The last
term corresponds to the constraint concerning the
production rate. Here, the function g has been intro-
duced to distinguish two cases:

If the production rate is not met we obtain a very poor
fitness for very large M. The weights W1 , W2,  and W3

of the other terms were determined in discussions
with body shop planning experts and set to 1, 2 and 2,
respectively, whereas M was set to 1200 throughout
all experiments described in the following section.

4. Computational Results

The main interest of the case study presented in this
section is a comparison of the commercial packages

with a manually guided local search, as it is usually
performed at BMW. The implementations of both
commercial optimization tools need to be considered
as black boxes, since the vendors offer compiled mod-
ules that can only be configured to some degree by
user dialogs (see Figure 4). We additionally compare
the results with a Pascal implementation of a simple
genetic algorithm with some slight modifications [30-
31], to be able to rank and evaluate the commercial
packages on a broader basis. This GA is based on a 1-
point-crossover, a roulette selection strategy and a
generational replacement of individuals. The fitness
corresponds directly to the objective function value
(instead of using a ranking-scheme).

The real-world problem instance of the BSDP out-
lined above was provided by BMW. This problem in-
stance was particularly interesting for our research as
it has been subject to a prior manual optimization and
the results obtained by BMW could be directly com-
pared with the results of our solution approach. The
problem instance comprises n = 13 different buffers
and m = 14 different welding blocks.

In order to apply simulated annealing, an appropri-
ate way has to be defined to change a solution locally.
Here, we decrease or increase the cycle time of one
block by one second or the size of one buffer by one
unit, respectively, to compute a new solution. The val-
ues for all 27 variables have further been limited to 16
possible cycle times and 16 possible buffer sizes to re-
duce the solution space under consideration. The
same variable values and domains were used for the
GAs.

Basically, four different approaches to tackle this
instance of the BSDP are compared: the manual
search procedure (MAN), the SIMPLE/GA module
combined with a SIMPLE++ simulation model of the
body shop denoted as SGA, the (extended) standard

Figure 4. Example of parameter settings for SIMPLE/GA

  M (N d(pg, tz))⋅ −

  
g(d(pg, tz), N)

if d(pg, tz)  N

0 otherwise
=

<


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Pascal implementation combined with a SIMPLE++
simulation model (PGA), and the Witness-Optimizer
module using simulated annealing combined with a
Witness simulation model of the body shop (WSA).
The presented case study comprises the analysis of 45
simulation experiments consisting of more than
20,000 simulation runs. The experiments were con-
ducted on an IBM-compatible PC with an Intel
Pentium II microprocessor running at 400 MegaHertz.
The tests are divided into three parts. A first series of
experiments is performed to provide insights into the
steady state and precision of the stochastic simulation
model. Based on these theoretically important results,
i.e., how to obtain sustainable estimates of the perfor-
mance measure d, a set of experiments is conducted to
compare the three metaheuristic approaches with the
manual optimization. In a third series of experiments,
the impact of the algorithms' calibration is analyzed in
more detail, i.e., the parameters that influence the
search behavior of the SIMPLE/GA as, e.g., the num-

ber of generations, the number of individuals per gen-
eration, the probability of mutation and crossover or
the applied selection strategy, are under further con-
sideration.

4.1 Experiments – Part I
To gain information about the length of a simulation
run necessary to achieve a steady state, plots of the
moving averages of the output per hour are examined
[32]. Here, the average output is computed of w
hours, i.e., w is the length of the (time) window under
consideration and is positive integer. As Figure 5
shows, it takes the body shop model at least 16 hours
to reach a state that can be considered as steady.

The calculation of confidence intervals based on the
results of the first series of experiments reveals the
classical dilemma of stochastic simulation between
accuracy of the estimates and computation times. Fig-
ure 6 shows the development of the ratio between
confidence interval half-length and average daily out-

Figure 5. Estimation of the run-in period using moving averages

Figure 6. Confidence intervals and CPU time
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put on the left y-axis, and of the required CPU time
on the right y-axis. While the CPU time increases al-
most linearly with the simulation period, the develop-
ment of the accuracy stresses the quadratic relation
between the confidence interval length and the
sample size.

For 60 generations with 20 individuals per genera-
tion, a relative half-length of 0.5% – as originally in-
tended – leads to computation times of several days
(cf. Figure 6). Due to product-related changes, long
computation times are not acceptable in the planning
process of such industrial applications, and planning
engineers need the results almost "overnight." In this
context, it may be necessary to obtain solutions in the
optimization process based on shorter simulation pe-
riods. Of course, these solutions have to be handled
with greater care since their validity is questionable.
This approach is still reasonable, as "good" solutions
of a simulation-based optimization might be tested in
subsequent experiments using longer simulation peri-
ods.

Furthermore, a solution suggested by a simulation
expert or computed by a metaheuristic controlled op-
timization may not be directly applicable to the un-
derlying real-world BSDP. Here, further constraints
such as budget restrictions, architectural and layout
limits may bias the results. It should be kept in mind
that the main purpose of the approach is to improve
and simplify the manual search process of the plan-
ning engineers and not to necessarily find an indi-
vidual that represents the optimal solution for the
overall real-world problem.

4.2 Experiments – Part II
The aim of the experiments of the second part of the
study is to compare the three metaheuristic-based ap-
proaches with the manual optimization. The results

for the best solution found by the different ap-
proaches are shown in Figure 7.

In this figure, it can be seen that all three
metaheuristics clearly improve the best manual solu-
tion, which defines the reference values (100%) for all
three solution parameters under consideration. Fur-
thermore, not only the best but also the average solu-
tions found by the different heuristic approaches
proved to surpass the manual procedure.

A significant reduction of the buffer sizes is
achieved by all three approaches with SGA providing
the best overall results. The cycle times can, as ex-
pected beforehand, be improved only to a small de-
gree. Note that for the cycle times, an extension means
an improvement. PGA finds a solution with the long-
est average cycle times, but obviously at the cost of a
higher variance.

For all three solution procedures, the required CPU
time depends almost entirely on the time to conduct
the simulation experiments. In this respect, there are
only marginal differences between the two simulation
packages under consideration. As discussed above, a
solution does only have one value for practitioners if
it is found within a certain time limit. Therefore, the
number of evaluated solutions per optimization pro-
cess was restricted to 5000.

4.3 Experiments – Part III
The genetic algorithm-module SIMPLE/GA provides
a variety of parameters to control the optimization
process [33]. In the third series of experiments, the im-
pact of some of these parameters is further analyzed.
The significance of the influence of these parameters
can be demonstrated by means of two experiments. In
one series of runs, the parameter Fitness Reference was
set to "absolut" and the option Clone Best Solution was
selected to always choose the best solutions as a basis

Figure 7.  Relative buffer sizes, relative cycle time and relative deviation of cycle
times compared to the best manual solution
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for the next generation and to always copy the genes
of the best solution without subjecting the latter one
to crossover and mutation.

In another series, the Fitness Reference is set to "rela-
tive" and the option of cloning the best solution is not
selected, following the more "classical" parameter set-
tings for genetic algorithms. Figures 8 and 9 show the
development of the fitness function for 60 generations
of the best, worst and average individual, respec-
tively.

The first parameter setting leads to an intensified
search and a fast convergence of the best, the worst
and the average fitness values within the population
(cf. Figure 8), i.e., after about 15 generations only indi-
viduals with similar genes are combined with each
other. The second parameter setting leads to a com-
pletely different behavior of the algorithm. Since the
genes of the best solution(s) are not necessarily passed
on to the next generation, there is not such a clear
convergence of the algorithm. Based on the same ini-
tial population, the intensifying search leads to a
lower (average) fitness value of the best solution of
about 10%. However, it is not valid to conclude that
this parameter setting generally leads to better results.

Figure 8. Fitness values over 60 generations with intensifying search

Figure 9. Fitness values over 60 generations with diversifying search

The development of the fitness values also depends
on other influences, e.g., the initial population, as
some experiments indicate.

5. Conclusions and Further Research
In this paper, we have presented a simulation-based
optimization approach for the body shop design
problem. The approach is based on a combination of
metaheuristics, such as genetic algorithms and simu-
lated annealing, and simulation models of car body
shops. The approach has been evaluated using a stan-
dard implementation of a simple genetic algorithm as
well as commercial packages of both metaheuristics.
To test and evaluate our approach, a comprehensive
case study was undertaken at a German car manufac-
turer.

The presented results, along with the judgment of
the planning engineers of the car manufacturer, allow
the conclusion that simulation-based optimization is
an excellent tool to support the optimization process
within the conceptual design phase, which is usually
conducted manually. Almost all results indicate that
metaheuristics are able to detect solutions that the
manually guided local search procedure has not dis-
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covered. The commercially available optimization
tools turned out to provide a good solution quality.

Especially considering the availability of commer-
cial optimization software, our approach allows a
relatively easy adoption for other problem instances
in this field by using the same objective function and
optimization process. Here, the main problem lies in
the calibration of the objective function presented, as
the weights W1, W2 and W3 have a significant impact
on the overall solution quality.

The computation times turned out to be a problem
if the solutions were to be estimated with the accuracy
that is desirable from a theoretical point of view.
Here, we have proposed an optimization process that
neglects the demand for strong accuracy in the first
phase. However, engineers need to be made attentive
for the possible lack of validity of the suggested solu-
tions.

Further research should concentrate on substituting
simulation models by (analytical) queuing models of
car body shops, since almost all of the computation
time is needed to perform the simulation runs. Fur-
thermore, the applied commercial optimization pack-
ages remain to be tested against more sophisticated
metaheuristics, as e.g., tabu search [34], and optimiza-
tion frameworks [35-36] than the simple implementa-
tion of the genetic algorithm.

The impact of the numerous parameters of the
commercial tools on the optimization process needs to
be evaluated on a broader basis, too. In this context,
methods that support an automated adoption of pa-
rameters of the algorithm within the optimization
process, e.g., the probabilities for crossover, the selec-
tion strategies or the computation of the fitness (rela-
tive or absolute), may be of great value for industrial
applications [37].

To conclude, the approaches discussed have be-
come an essential part of the planning process of the
body shop engineers at BMW. Here, genetic algo-
rithms will especially support the future planning
processes of car body shops, as simulation has been
for some years.
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