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Abstract

The visualization of conveyor systems in the sense of a connected graph is a

challenging problem. Starting from communication data provided by the IT system,

graph drawing techniques are applied to generate an appealing layout of the

conveyor system. From a mathematical point of view, the key idea is to use the

concept of stress majorization to minimize a stress function over the positions of the

nodes in the graph. Different to the already existing literature, we have to take care of

special features inspired by the real-world problems.
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1 Introduction

Currently, graphs are widely used in various domains to visualize important information

clearly. Subway timetables, road maps, mobile networks, family trees and social networks

can be easily represented by graphs. In this paper, we discuss how well a graph can repre-

sent the exact physical structure of a real-world conveyor system by using only its com-

munication data as input.

Graph drawing dates back to the works of Fáry [13] on theorems about planarity, the

spring algorithm by Tutte [28] or the visualization of flowcharts by Knuth [23]. In the pre-

ceding three centuries, graph drawing has been extensively researched. Good reviews of

various approaches and methods are provided in [7, 10, 19, 21]. Many of these methods

do not consider distances between nodes. However, doing so is one of crucial criteria in

drawing the physical structure of a conveyor system. Additionally, most algorithms are

designed to draw aesthetically pleasing graphs. More specifically, e.g., the nodes should

be spread well over the drawing, and edge crossing should be avoided. In this paper, we

focus not on these aesthetic criteria but on visualizing the structure of a conveyor sys-

tem as accurately as possible. Drawing the physical structure of a network as a graph is

an approach mainly used in the area of sensor networks [18, 25] and molecular structures

[1]; however, to the best of our knowledge, it has never been applied to conveyor systems.

Eades andWormald proposed in [12] that to draw a graph with edges being straight lines

that do not cross each other and with the same as well as different distances between all

nodes is an NP-hard problem. One of the most common force-directed algorithms that
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consider the distances between nodes is that proposed by Kamada and Kawai [20]. It iter-

ativelyminimizes an energy or stress function that consists of differences of real or desired

distances for all pairs of nodes and their Euclidean distances. Gansner et al. [16] improved

this algorithm by applying themajorizationmethod for the area of multidimensional scal-

ing to minimize the energy or stress function. Further algorithms for large graphs have

also been proposed. Two of them are COAST [14] and the maxent-stress method [15, 24].

Both methods reformulate the stress function by splitting the summation in two parts.

One summation consists of the set of all directly connected nodes and the other one of in-

directly connected nodes. In [30] Zheng et al. use a modified stochastic gradient descent

to minimize the stress function instead of majoriztaion. Although this stochastic gradi-

ent descent seems to be beneficial regarding performance issues, we focus on the stress

majorization proposed by Gansner, Koren andNorth [16] as ourmajor concern is the gen-

eration of an appealing layout of the real conveyor system. Subsequently, we will discuss a

second method for graph drawing, namely, the classic multidimensional scaling [4–6, 27]

that computes a good initial layout for stress majorization.

The motivation of applying graph drawing approaches to conveyor systems is to ease

the application of process mining on logistic material flow. ProcessMining in highly auto-

mated logistics and production systems essentially focuses on the analysis and visualiza-

tion of process data to improve business processes in the operational area [17]. Due to the

high manual effort, there is often no direct projection of the process graph onto a realistic

representation of the system components. This, however, is expected by involved systems

engineers as they are used to such visual representations for example from conducting

simulation studies of logistic systems with discrete event simulation software packages

[3]. For the application of both methodologies, process mining and discrete event simula-

tion, an efficient and generic creation of the visual representation of the conveyor system

is important and very helpful. In the field of discrete event simulation, existing concepts

for automatic model generation always focus on the transformation of CAD data or the

transfer of data from other software systems like process and structure describing model-

ing environments [2]. Accordingly, these approaches are highly tool-dependent or rather

abstract in their representation, and thus can only be generalized to a limited extent. The

idea to automatically generate layout structures of the conveyor systemonly from the com-

munication data between subordinate and superordinate IT systems is a completely dif-

ferent independent approach and served as motivation for the research presented in this

article.

2 Model description

In conveyor systems, scanners installed at various locations register all passing goods.

Given this data, we want to draw a graph that shows the physical structure of the conveyor

system as effectively as possible. The locations of scannerswill be represented by the nodes

of the graph, and the conveyor will be represented by the corresponding edges. Using the

communication data of scanners, we can identify the exact path or the distance traveled

by the goods and the required time. Let the velocity of the system be known. Then, we can

compute the length of every single distance. This information is required for the graph

drawing algorithms presented in this paper.

Before we introduce the methods used to draw graphs, we explain how we modify the

communication data and the assumptions we make. Given that many goods are trans-

ported over the same path or at least the same distances, the scanners register these paths
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Figure 1 Three examples of our modification of

communication data

more than once with likely different time durations. However, to compute the distance

of the path in the graph, we have to pick one of these different time durations. There-

fore, we assume that the fastest good transported along the path represents the length

of this distance. Another important assumption we make is that only the time duration

of distances that are directly connected is known. The recorded time duration for every

distance is positive and valid. Furthermore, we assume that the names of scanners are ran-

dom, and hence, we do not use such naming information to draw the graph. In addition,

all goods are the same and have the same shape and properties. We neglect the capacity

of conveyor systems. It is easier to draw graphs with straight lines than those with curves.

Therefore, we assume that all edges in a graph are straight rather than curvy or polygonal,

even though in real-world conveyor systems, there are numerous curved conveyors. Al-

though the goods can only be transported in the same direction, we assume the graph to

be undirected. The algorithm of stress majorization that we use to draw the graph can vi-

sualize only connected graphs or, if the graph is not connected, only one part of the graph.

Hence, we ensure that the graph is connected and delete unconnected nodes.

Wemodify communication data so that if there are inverse edges with different distance

lengths, the shorter distance will be used to draw the graph, as shown in the first graph in

Fig. 1. The distance over which the goods are transported from node A to node B in this

example is 3, but the distance over which the goods are transported from B to A is 10. We

cannot draw nodes A and B at a distance of 3 and at the same time at a distance of 10.

Therefore, we take the smaller distance and draw the nodes with a distance of 3. In the

second graph in Fig. 1, nodes A and B are connected with a distance of 0. In real-world

systems, the scanners may happen to be close to each other, and therefore, the time dura-

tion of transporting the goods fromA to Bwill be practically 0. However, the algorithm for

drawing graphs cannot cope with this distance because a distance of 0 means that there

is no direct connection between nodes A and B. To avoid these problems, we remove all

connections with distances of 0 from the data, and the nodes of scanners will be edited

so that the graph stays connected. In our example in Fig. 1, node B will be deleted from

the data, and we will add a new connection from node A to node C with a distance of

10. If node B would be directly connected to nodes other than node C, then it would be

replaced by node A. Furthermore, we delete all loops from the data, as shown in the last

example in Fig. 1. The loop from node A to node A will be removed from the data because

the algorithm for drawing graphs cannot handle loops.

2.1 Stress majorization

In this section, we present stress majorization as described in [11, 16, 29]. Let an undi-

rected graph G = (V ,E) with vertex or node set V = {1, . . . ,n} and edge set E be given.
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The placement of nodes will be defined by matrix X ∈ R
n×a, where a represents the di-

mension of the visualization. Xi ∈ R
a denotes the coordinates of node i. To obtain a good

visualization of the graph, we minimize the following stress or cost function:

f (X) =
∑

i<j

ωij

(

‖Xi –Xj‖ – dij
)2
, (2.1)

where ωij ≥ 0 is the weight for the measurement of vertex pair (i, j), dij is the graph-

theoretical distance of nodes i and j, and ‖ · ‖ is the Euclidean norm. For weight ωij = d
q
ij,

we take q = –2 in this paper. Normally, just the distances of the adjacent nodes are known.

To calculate the shortest distances of all non-adjacent vertices, we use the Dijkstra’s algo-

rithm. Hence, d and w are dense and represent matrices of all distances and of all weights,

respectively.

For minimizing cost function (2.1), Kamada and Kawai proposed the Newton–Raphson

method [20]. Themajorization of this cost functionwas proposed by de Leeuw [9] andwas

first used in multidimensional scaling. It guarantees a monotonic decrease of cost and is

therefore more robust and less time-consuming. Expanding cost function (2.1), we obtain

the following equation:

f (X) =
∑

i<j

ωijd
2
ij +

∑

i<j

ωij‖Xi –Xj‖2 – 2
∑

i<j

ωijdij‖Xi –Xj‖. (2.2)

The first term of the expanded cost function (2.2) is a constant and thus independent of

the placement of nodes. The second term is a quadratic sum and can be written with a

so-called weighted Laplacian [16] as follows:

∑

i<j

ωij‖Xi –Xj‖2 =
a

∑

k=1

(

X(k)
)T
LωX(k) = tr

(

XTLωX
)

,

where the elements of the Laplacian are defined as

Lω
ij =

⎧

⎨

⎩

–ωij, i �= j,
∑n

l=1,l �=i ωil, i = j.
(2.3)

By definition, this matrix is symmetric and weakly diagonal-dominant. Hence, the Lapla-

cian is positive semidefinite.

Using the Cauchy–Schwarz inequality and matrix Z ∈ R
n×a, we can bound the third

term from below as follows:

∑

i<j

ωijdij‖Xi –Xj‖ ≥
∑

i<j

ωij · dij · inv
(

‖Zi – Zj‖
)

(Xi –Xj)
T (Zi – Zj), (2.4)

where the inverse is defined as inv(x) = 1
x
if x �= 0 and 0 otherwise. We can simplify in-

equality (2.4) by using another weighted Laplacian LZ ,

∑

i<j

ωijdij‖Xi –Xj‖ ≥
a

∑

k=1

(

X(k)
)T
LZZ(k) = tr

(

XTLZZ
)
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with the elements of the Laplacian defined as

LZij =

⎧

⎨

⎩

–ωij · dij · inv(‖Zi – Zj‖), i �= j,

–
∑n

l=1,l �=i L
Z
il , i = j.

Combining all three terms, we obtain the following function:

gZ(X) =
∑

i<j

ωijd
2
ij +

a
∑

k=1

((

X(k)
)T
LωX(k) – 2

(

X(k)
)T
LZZ(k)

)

=
∑

i<j

ωijd
2
ij + tr

(

XTLωX
)

– 2 tr
(

XTLZZ
)

.

Now, we can bound stress function f (X) from above:

f (X)≤ gZ(X). (2.5)

Equality holds for Z = X and Z ∈ R
n×a. Differentiating gZ(X) with respect to X, we can

find the minimum by solving the following equation:

LωX = LZZ. (2.6)

Equivalently, we can solve this equation for every dimension k:

LωX(k) = LZZ(k), k = 1, . . . ,a. (2.7)

This linear system has no unique solution. Asmentioned before, Laplacian (2.3) is positive

semidefinite. Because the row sum
∑n

j=1 l
ω
ij = 0,∀i ∈ {1, . . . ,n} of Lω one of the eigenvalues

has to be λk = 0 with multiplicity 1. Thus, the rank of the Laplacian is rank(Lω) = n – 1.

Conversely, gZ(X) is a quadratic function with a symmetric positive semidefinite matrix

Lω ∈ R
n×n. Hence, every local minimum of gZ(X) has to be a global minimum. To ob-

tain a solution of equation (2.7), if a solution exists, in a classic multidimensional scaling

approach, the Moore–Penrose inverse is used to solve X = (Lω)†LZZ. However, it is too

time-consuming to compute the solution in this way. Therefore, we apply another method

proposed by Gasner et al. [16]. By setting any Xi = 0, we can remove the ith row and col-

umn of Laplacian Lω . Consequently, we obtain an (n – 1) × (n – 1) matrix that is strictly

diagonal-dominant because removing a row and column makes the row sum unequal to

0. Furthermore, the ith row of LZZ can be removed. Since Laplacian Lω is positive def-

inite, the global minimum is unique, and we can either use direct methods such as the

Cholesky decomposition or iterative methods like conjugate gradients to solve the linear

system (2.7). Note that in [30] Zheng et al. the various solution techniques are compared

in a numerical study. Throughout this paper we only apply the Cholesky decomposition.

Now, we can formulate the iterative optimization process. Let X(t) be the coordinates

of nodes. We want to compute the new coordinates X(t + 1) so that f (X(t + 1)) < f (X(t)),

and we know that inequality (2.5) leads to gX(t)(X(t)) = f (X(t)) for X(t) = Z(t). To find the



Göttlich et al. Journal of Mathematics in Industry           ( 2020)  10:24 Page 6 of 23

new coordinates X(t + 1) with a lower cost, we have to solve the following linear system

for every dimension k:

LωX(t + 1)(k) = LX(t)X(t)(k), k = 1, . . . ,a. (2.8)

Using the computed solution X(t + 1), we can iteratively find the optimal coordinates by

solving system (2.8) with the new solution. In every step, matrix Lω remains the same, so

just one Cholesky decomposition is necessary. Because of the abovementioned properties,

we have a strictly monotonically decreasing cost function:

f
(

X(t + 1)
)

≤ gX(t)
(

X(t + 1)
)

< gX(t)
(

X(t)
)

= f
(

X(t)
)

, for X(t + 1) �= X(t). (2.9)

Theoretically, we stop the iteration if X(t + 1) = X(t). However, in practice, we stop if the

difference between costs of new and old placements relative to the cost of the old place-

ment is less than ε > 0, i.e.,

f (X(t)) – f (X(t + 1))

f (X(t))
< ε. (2.10)

In general, it is difficult to predict the number of iterations, the rate of convergence is very

low and the computation of the shortest path via Dijkstra’s algorithm is O(n3), so stress

majorization is impractical for large graphs. Thus, we apply the successive over-relaxation

(SOR)method proposed byWang andWang [29]. This method combines two solutions—

the current and new values of the iterative process—to compute the new corrected co-

ordinates X∗. The current and new solutions approximate the true solution, but the new

solution X(t+1) is better than the current X(t) due to the property f (X(t+1)) < f (X(t)) for

X(t+1) �= X(t). The intuition behind thismethod is that the new andbetter solutionX(t+1)

has been strengthened through the relaxation factor τ ≥ 0, while the worse solution X(t)

has been suppressed. If the cost of the combined solution X∗ = (1 + τ )X(t + 1) – τX(t) is

less than that of the computed solution X(t + 1) of the linear system, then we accept X∗

and reject X(t + 1). Otherwise, we reject X∗ and continue with the iteration by solving

linear system (2.8). The relaxation factor τ determines the degrees of weighting of the two

computed solutions. At τ = 0, we obtain the original optimization process without SOR.

Algorithm 1 presents stress majorization with successive overrelaxation.

There are several othermethods tomake the stressmajorization scalable to large graphs,

e.g. the sparse stress model [26] or MARS [22]. As already mentioned, Zheng et al. [30]

proposed anothermethod tominimize the stress function. They use amodified stochastic

gradient descent with random reshuffling and step size annealing. Since themajor concern

of this paper is the reproduction of the physical structure of conveyor systems and not

enhanced performance we stick to stress majorization with SOR.

2.2 Classical multidimensional scaling

In this section, classicmultidimensional scaling (CMDS) will be presented. In general, this

method produces a good initial layout X(0) for the optimization process. This section is

based on [4–6, 27].

Multidimensional scaling was designed to show dissimilarities of different objects as

graphs. Classic multidimensional scaling interprets dissimilarities as Euclidean distances
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Algorithm 1 Stress majorization [29, p. 681]

Input: Matrix d ∈ R
n×n with the respective distances, relaxation factor τ ≥ 0

Output: Matrix X ∈R
n×a with the coordinates of all nodes

1: Initialize the placement X(0) and set t = 0

2: while
f (X(t))–f (X(t+1))

f (X(t))
≥ ε do

3: Solve the system of linear equations LωX(t + 1)(k) = LX(t)X(t)(k),

k = 1, . . . ,a for all dimensions k

4: Set X∗ = (1 + τ )X(t + 1) – τX(t)

5: if f (X∗) ≤ f (X(t + 1)) then

6: Set X(t + 1) = X∗

7: end if

8: Set t = t + 1

9: end while

10: return X(t).

between particular objects and tries to show the global structure of the data. To represent

the global structure, CMDS focuses on long distances in contrast to stress majorization

that focuses on shorter distances due to weight ω = d–2.

As in the setting for stressmajorization, we have the object or node setV = {1, . . . ,n} and
the matrix d ∈ R

n×n with the dissimilarities or distances dij for all nodes i, j ∈ V . For any

distance, we have dij = dji ≥ 0, i �= j, i, j ∈ V and dii = 0,∀i ∈ V . Hence,matrix d is symmetric

with entries on the main diagonal dii = 0 and nonnegative entries outside. As above, X ∈
R

n×a represents the coordinates of all nodes. In this paper, we only consider graphs in

the two-dimensional space. Therefore, we only discuss CMDS for a = 2. Nevertheless, the

algorithm also applies to higher-dimensional spaces. The goal of classic multidimensional

scaling is to find the coordinates of nodes in 2D such that

d2
ij = ‖xi – xj‖2 = 〈xi – xj,xi – xj〉 = 〈xi,xi〉 – 2〈xi,xj〉 + 〈xj,xj〉. (2.11)

The distances in a Euclidean space are invariant under translation, so we assume that co-

ordinatesX are centeredwith respect to the origin so that
∑

xi = 0 holds. Solving equation

(2.11) for 〈xi,xj〉, we obtain

〈xi,xj〉 = –
1

2

(

d2
ij – 〈xi,xi〉 – 〈xj,xj〉

)

. (2.12)

Due to centering with respect to the origin, we obtain the following equations for the row

average, the column average and the total average:

1

n

n
∑

i=1

d2
ij =

1

n

n
∑

i=1

〈xi,xi〉 + 〈xj,xj〉,

1

n

n
∑

j=1

d2
ij = 〈xi,xi〉 +

1

n

n
∑

j=1

〈xj,xj〉,

1

n2

n
∑

i=1

n
∑

j=1

d2
ij =

2

n

n
∑

i=1

〈xi,xi〉.
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Algorithm 2 Classic multidimensional scaling [4, p. 105f.]

Input: Matrix d ∈ R
n×n with the respective distances

Output: Matrix X ∈R
n×2 with the coordinates of all nodes

1: Compute d2 by squaring every entry of d

2: Convert the squared distances to scalar products through double centering of d2: B =

– 1
2
Znd

2Zn with Zn = In –
1
n
1n, where In is the n×n identity matrix, and 1n is the n×n

unit matrix

3: Compute the eigendecomposition B =U�UT

4: Take the two largest positive eigenvalues λ1 and λ2 and the respective eigenvectors u1

and u2, and set X = [
√

λ1u1,
√

λ2u2]

5: return X.

Using these averages in equation (2.12) allows for the entries of matrix B = (bij) ∈R
n×n to

be written as

bij = 〈xi,xj〉 = –
1

2

(

d2
ij –

1

n

n
∑

i=1

d2
ij –

1

n

n
∑

j=1

d2
ij +

1

n2

n
∑

i=1

n
∑

j=1

d2
ij

)

or as matrix

B = XXT = –
1

2
Znd

2Zn

with matrix d2 computed by squaring every entry and centering matrix Zn = In –
1
n
1n,

where In is the n × n identity matrix, and 1n is the unit matrix. To compute coordinates

X ∈ R
n×2, we can use the eigendecomposition. Due to the symmetry of B and the real-

valued entries, all eigenvalues are real, and we can find orthonormal eigenvectors. Let

λ1 and λ2 be the two biggest positive eigenvalues and u1 and u2 be the corresponding

eigenvectors. To obtain coordinates X, we set

X = [
√

λ1u1,
√

λ2u2].

The eigenvalues and the corresponding eigenvectors can be easily computed by power

iteration. The classic multidimensional scaling minimizes the following cost function:

f (X) =
∥

∥B –XXT
∥

∥

2
=

∑

i,j

(

bij – xTi xj
)2
.

Algorithm 2 summarizes this method.

The complexity of computing matrix d with all short distances with the Dijkstra’s algo-

rithm isO(n3); it takesO(n2) to compute matrix B andO(n2) per iteration. Therefore, the

total complexity of the classic multidimensional scaling is O(n3).

3 Applications

In this section, we will discuss the results of our tests. First, we test the implementation on

graphs from the extant literature. Then, we apply Algorithms 1 and 2 to real-world data

of conveyor systems and discuss the problems that occur. All datasets of graphs from the
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Table 1 Datasets from the literature*

Name |V| |E| Average degree Description

1138_bus 1138 1458 2.5624 Power system network

plat1919 1919 15,240 15.8833 Symmetric finite difference three-ocean model

USpowerGrid 4941 6594 2.6691 US power grid

* Source: https://sparse.tamu.edu/, retrieved on: March 6, 2020.

Figure 2 Stress majorization applied to graph 1138_bus after 10, 20, 30, 40 and 47 iterations, respectively

literature that are used in this section are from [8]. The implemented algorithms are run

on a computer with Windows 10 version 1809, 8.00 GB of RAM and Intel Core i7-7500U

CPU operating at 2.70 GHz.

3.1 Academic examples

The three examples commonly used in the literature are described in Table 1.

All of these graphs are modified so that the distance of every edge is dij = 1 m. The error

bound is ε = 0.0001. Algorithm 1 of stress majorization stops if

f (X(t)) – f (X(t + 1))

f (X(t))
< ε

or

∥

∥X(t) –X(t + 1)
∥

∥

∞ < 0.01,

where ‖ · ‖∞ defines the row-sum norm. In the literature, ω = d–2 has proven to be a good

choice of weight, so we use this value as a standard.

Figure 2 shows stress majorization applied to graph 1138_bus. The first image in the

top left shows the initial layout. Here, we do not use CMDS to compute the initial layout.

Instead, we compute a simple initial layout by placing different nodes alternately at the x-

and y-axes with distance dij = 1 m and adding the edges afterwards. Subsequently, stress

majorization is applied to the initial layout to optimize the graph. The relaxation factor

is τ = 2. We will discuss the optimal choice of this relaxation factor further on. The other

images show the progress of the graph after 10, 20, 30, 40 and 47 iterations, respectively.

We observe that after 20 iterations the main structure of the graph is visible, and after-

https://sparse.tamu.edu/
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Figure 3 1138_bus, left: result from [14], right: our result

Figure 4 plat1919, left: result from [26], right: our result

Figure 5 USpowerGrid, left: result from [14], right: our result

wards, only small changes occur. After 47 iterations with 35 accepted SOR values, one of

the stop criteria is fulfilled, and the algorithm terminates.

There is no true solution, and the graph drawn depends on the configuration. Therefore,

we verify Algorithm 1 for stress majorization by comparing our results with those in the

literature. The configurations are based on those in the literature as far as they are known.

Figures 3, 4 and 5 show the comparisons for the three respective examples. We observe

that our computed graphs are similar to those in the literature.

3.1.1 SOR

In this section, we will discuss the optimal choice of relaxation factor τ for successive

overrelaxation. Using the optimal factor is very important since a reasonable choice of τ
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Figure 6 Comparison of the numbers of iterations for various values of relaxation factor τ with classic

multidimensional scaling as the initial layout

will greatly enhance the algorithm’s computation speed. Thus, we would not need asmany

iterations of stress majorization to draw the optimal graph.

As explained above, the SORmethod combines two solutions and computes a new can-

didateX∗. The relaxation factor determines how heavily solutionX(t+1) will be weighted.

At τ = 0, we perform stress majorization without the SOR strategy. Due to the relaxation

factor, we can accelerate the convergence of the cost function.

Figure 6 shows the total number of iterations for various choices of relaxation factor

τ used with datasets 1138_bus and plat1919 with CMDS as the initial layout. The gray

bar shows the number of relaxations rejected because the cost of the computed solution

X∗ is higher than that of the solution computed by solving linear system (2.8). In con-

trast, the black bar shows the accepted relaxations. We try strategies of different types

for the relaxation factor to determine the impact. As proposed in [29], we use fixed and

probabilistic strategies. In the fixed strategy, we choose the value of the relaxation fac-

tor before the iteration starts and never change it during the iterations. We consider

the following values of the factor: τ ∈ {0, 0.5, 1, 1.5, 2, 3, 4, 5, 6, 7, 8, 9}. In the probabilistic

strategy, we choose probability distribution ‘auto’ proposed in [29], which is defined as

P(τ = 0.5) = P(τ = 1) = 0.3,P(τ = 1.5) = P(τ = 2) = 0.2. In addition, we test uniform distri-

butionsU(0, 6) andU(2, 4) aswell as normal distributionsN(1, 0.5),N(1.5, 0.5) andN(3, 1).

The results for probability distributions are based on the arithmetic average of 20 runs.

Figure 5 shows that in most cases, it is beneficial to use the SOR method, and τ = 0, i.e.,

X∗ = X(t+1), is a bad choice. Furthermore, we observe that for factors τ > 1 the number of

accepted relaxations becomes progressively lower, yet the total number of iterations also

decreases. For large factor values, the number of iterations increases due to relaxations

being accepted rarely. The probability distributions with expectation μ < 2, i.e., N(1, 0.5)

with expectation μ = 1, N(1.5, 0.5) with μ = 1.5 and probability distribution ‘auto’ pro-

posed in [29] with expectation μ = 1.15, are even worse choices than the others.

Figure 7 shows the speedup of the SOR method for various values of relaxation factor

if the method is applied to the USpowerGrid dataset. The running time of Algorithm 1

without SOR is 133.3 s. However, if the SOR method is used with probability distribu-

tion τ ∼ U(0, 6), stress majorization requires only 65.05 s to reach the same cost level.

Even though Algorithm 1 needs more time in every step to compute the coordinates of

nodes X∗ = (1 + τ )X(t + 1) – τX(t) and the cost f (X∗), the speedup of the SOR method is

undeniably significant even for large relaxation factors. Because using probability distri-

bution U(0, 6) results in a good graph being drawn after few iterations for the analyzed
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Figure 7 Comparison of running times for various values of relaxation factor τ in the SOR method applied to

the USpowerGrid dataset

Figure 8 Comparison of various strategies for relaxation factor τ applied to the USpowerGrid dataset

datasets (cf. Fig. 6) and therefore speeds up the optimization process, in what follows, we

will henceforth consider relaxation factor τ ∼U(0, 6).

In [29], the researchers propose an enumerating strategy that in every iteration, seeks

the best relaxation factor by using an exhaustive search method. For simplicity, the search

for the optimal factor uses the discrete candidate set τ ∈ {0, 0.5, 1, 1.5, . . . , 8.5, 9, 9.5}. We

compare this strategy with our proposed probabilistic strategy τ ∼U(0, 6). Figure 8 shows

the results. The black line represents our strategy, and the gray dashed line corresponds

to the optimal factor found in the given set in every iteration. Although a uniformly dis-

tributed τ differs greatly from the optimal factor, it leads to good graphs being obtained

after few iterations within a short time. It would be too time-consuming to consider all

candidate relaxation factors in each iteration, and the time needed for this computation

cannot be canceled out by the time saved by the reduction of the number of iterations.

3.1.2 Initial layout

Brandes et al. proposed and confirmed in [6] the hypothesis that classic multidimensional

scaling provided a good initial layout for stress majorization. The simple initial layout,

which places the nodes on the axes (cf. Fig. 2, top left), has no structural similarities with

the optimal graph. Furthermore, many iterations are necessary to minimize the cost. As
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Figure 9 CMDS applied to 1138_bus, plat1919 and USpowerGrid datasets

Figure 10 Comparison of stress majorization with a simple initial layout (left) and CMDS (right) applied to the

1138_bus dataset

explained in the previous section, the classic multidimensional scaling is better at repre-

senting the global structure with the focus on long distances. In this section, we discuss

the main advantages of CMDS. Figure 9 shows the initial layouts for 1138_bus, plat1919

and USpowerGrid datasets. If we compare the graphs drawn by CMDS with Figs. 3–5,

we observe that the global structure of the graphs is presented well, but the fine details

are not. CMDS is a good method for computing the initial layout because the respective

costs are less than those of a simple or random initialization. Hence, Algorithm 1 of stress

majorization needs fewer iterations to find the optimum, and the total costs are also lower.

Now, we compare the results of stressmajorizationwith various initial layouts. Figure 10

(left) shows the optimal graph that started with a simple initial layout, and the right part

shows the optimal graph with the initial layout computed by CMDS. Bothmethods lead to

good graphs. The reason we should prefer the classic multidimensional scaling for com-

puting the initial layout is shown in Fig. 11.

The figure shows a time-cost plot for the 1138_bus dataset. The gray dashed line repre-

sents the cost level of the optimization process with a simple initial layout, and the black

line represents the cost level of the initial layout computed by CMDS and optimized with

stress majorization. As long as in the beginning of the optimization process the cost level

does not change, the initial layout, Laplacian Lω and the cost of the initial layout can be

computed. The running time of computing the Laplacian and the costs are the same in

bothmethods. Nevertheless, the classicmultidimensional scaling needsmore time to start
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Figure 11 Time-cost plot for various initial layouts for the 1138_bus dataset

Figure 12 CMDS and stress majorization with full matrix d (left), Pivot MDS and stress majorization with

sparse matrix d (right) applied to the 1138_bus dataset

the optimization process (cf. Fig. 11). The simple initial layout is computed in less than a

second because the nodes are merely placed on the axes, and there is no need for the

Dijkstra’s algorithm. To compute all the shortest distances via the Dijkstra’s algorithm,

approximately 5 s are needed, and both methods have to compute these distances. How-

ever, Fig. 11 shows that the optimal graph is found faster by using CMDS to compute the

initial layout, even though the initial process requires more time. The speedup of stress

majorization with the initial layout computed by CMDS is due to the lower cost level of

the initial layout. Therefore, fewer iterations are needed, namely, only 15 iterations on av-

erage. It is difficult to see in the figure, but additionally, the total costs at the end are less

with CMDS (approximately 39,930 on average) thanwith the simple initial layout (approx-

imately 42,406 on average).

In [5], Brandes et al. present a fast method to approximate the results of CMDS, the so-

called pivotMDS. Thismethod computes the eigendecomposition based on a k×nmatrix

with k ≪ n pivot elements. However, experiments have shown that the stressmajorization

applied to initial layouts computed by CMDS lead to a better physical structure compared

to initial layouts computed by pivot MDS as seen in Fig. 12. On the left, we computed the

initial layout with CMDS and applied the stress majorization to the full matrix d, whereas

the right figure shows the result of the stress majorization applied to the pivot MDS with

100 pivot elements as initial layout. Apparently, the graph of the CMDS as initial layout

is qualitatively better. This is due to the fact that in pivot MDS the eigendecomposition

of the k × n matrix is computed with the distances of these k pivot elements to all other
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Table 2 Table of real-world data

Name |V| |E| Average degree

Circuit of an overhead conveyor 141 175 2.482

Conveyor system for electric and electromechanical components 201 244 2.428

nodes while other distances are neglected. Therefore, the stress majorization is applied to

the sparse matrix d with just the distances of the k pivot elements to all other nodes.

3.2 Real-world problems

In the previous section, we discussed a reasonable setting for Algorithms 1 and 2 applied

to datasets from the literature. However, can the algorithmswith the suggested setting also

draw graphs that present the physical structure of a conveyor system well? In this section,

we will discuss the results of algorithms applied to real-world data of conveyor systems

provided by SimPlan.

Table 2 summarizes the data of conveyor systems used in this section. In contrast to

the datasets of the literature from the previous section, these data are unmodified. The

communication data represent the respective real-world distances of the system; i.e., the

algorithms of stress majorization and CMDS have to cope with edges of different lengths.

The real-world datasets are measured data. Therefore, there is uncertainty as to the

communication data and distances of the graph. These problems did not occur in the

case of the datasets from the literature. How we cope with the uncertainty and the con-

sequences will be discussed in the following sections. The setting for the optimization

process is the same as in the previous sections.

3.2.1 Predetermined distances

The distances of two nodes, computed using the communication data, do not always cor-

respond to their Euclidean distances in the conveyor system. For example, spiral conveyors

transport the goods in circles to the next stage. In the beginning and at the end of this spiral

conveyor, scanners are installed that measure the required transportation time. However,

such measured time does not correspond to the physical distance between the locations

of scanners. As the goods are transported in circles, they need more time to reach the end

of the spiral conveyor. Therefore, the distances computed according to time and velocity

overestimate the Euclidean distances. Yet, the CMDSAlgorithm 2 and stress majorization

1 try to draw these distances in the graphs as accurately as possible. This causes problems

in some cases and leads to inadequate graphs. The conveyor system of a producer of elec-

tric and electromechanical components is a good example for a discussion of this problem.

Figure 13 shows the original and initial layouts of the system. The classic multidimen-

sional scaling computes an insufficient initial layout for the graph because of the given

communication data. The initial layout is not even similar to the original layout, and there-

fore, the optimization process is time-consuming.

In this conveyor system, there is no spiral conveyor, but there is a buffer, where the goods

are transported and buffered until they can be processed again. During buffering, the

goods are not registered by any scanner. Therefore, the computed distance of this buffer is

very long. Figure 14 outlines a part of the original layout as a graph. The buffer is marked

by the dashed line between the large scanners MFR811 and MFR813. Figure 15 shows

the original layout of the conveyor system with marked reference nodes MFR460 and
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Figure 13 Original and initial layouts computed by CMDS for the conveyor system of electric and

electromechanical components

Figure 14 Graph of the buffer

Figure 15 Original layout of the conveyor system with a marked buffer

MFR835; the buffer is located in that area. The distance between the two nodes MFR811

andMFR813 is dMFR811,MFR813 = 3571.5 m and is thus very long compared to the other dis-

tances in the graph. As explained in Sect. 2.2, the classic multidimensional scaling draws

the global structure of a graph with the focus on longer distances. Hence, CMDS com-

putes an initial layout that approximates the distance dMFR811,MFR813 = 3571.5 m well but

neglects the shorter distances. This leads to an insufficient initial layout shown in Fig. 13.

Using stress majorization to optimize the initial layout, we obtain the graph shown in

Fig. 16. Even though the initial layout is insufficient and not at all similar to the original

layout, stress majorization leads to a reasonable graph being drawn. Because of weight ω =

d–2, the optimization process focuses on shorter distances, and therefore, the long distance

of the buffer has a relatively weak influence on the cost. However, optimization is time-

consuming due to the insufficient initial layout. To improve the graph drawn by CMDS

and hence the required running time of optimization, we try to fix the uncertainties of
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Figure 16 Stress majorization applied to the initial layout computed by CMDS

Figure 17 Initial layout and stress majorization with a predetermined distance dnew
MFR811,MFR813 = 3.5

distances by predetermining more realistic values for the problematic distances of buffers

or spiral conveyors. Figure 17 shows the results of choosing the distance of the buffer.

We preset the distance of the buffer to the value of dnew
MFR811,MFR813 = 3.5 m. Next, we use

classic multidimensional scaling to compute the initial layout with the new distance (cf.

Fig. 17 left). The initial graph with the predetermined distance is more similar to the orig-

inal layout than the initial layout with the distance given by communication data. This

occurs because we change the value of the buffer’s distance dnew
MFR811,MFR813 = 3.5 m. Now,

CMDS does not focus on approximating this long distance exactly anymore but also con-

siders the other distances. If we apply stress majorization to the new computed initial lay-

out, then we obtain an optimal graph similar to that before. However, the optimal graph

is computed faster because of the better initial layout; additionally, the costs at the end of

the optimization process are less than in the graph shown in Fig. 16.

The distances of buffers or spiral conveyors have to be predeterminedmanually to com-

pute the optimal graph. Algorithms 1 and 2 cannot themselves recognize these uncertain-

ties.

3.2.2 Reference nodes

Most conveyor systems consist not only of straight conveyors but also of curves and junc-

tions meant to transport goods to different stations. While Algorithm 1 can draw some

of the physical structures well, it fails at drawing curvy parts and junctions. This prob-

lem is caused not by the uncertainty of communication data but by the use of Dijkstra’s
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Figure 18 Two possible transportation routes or

vl-vr paths

Figure 19 Original, initial and optimal layouts of OCS without reference nodes

algorithm. The latter computes the shortest distances of all nodes if the distances are un-

known. However, the physical distance in the original layout of two nodes does not have

to match with the transportation route.

Figure 18 shows two possible transportation routes or vl-vr paths. Given the commu-

nication data, we cannot decide if path vl-vr runs straight ahead or zigzags. By using the

Dijkstra’s algorithm, we assume that the path is straight. However, in real-world conveyor

systems this is not always true: e.g., in Fig. 18, if we compute the distances of both paths by

using the Dijkstra’s algorithm, then we obtain the result dlr = 50 m for both paths. How-

ever, the real-world physical distance of the two nodes vl and vr in the second example

is dlr =
√

1
2

· 50 m and therefore much shorter than the computed distance. Hence, the

transportation route does not match the physical distance of two nodes.

To improve the visualization of the physical structure, we implement the option to spec-

ify some reference nodes. How we use the specified reference nodes within the optimiza-

tion process will be explained by the circuit of the overhead conveyor.

However, we first examine the initial layout and the optimized graph of the overhead

conveyor system (OCS) shown in Fig. 19. The global structure of twelve parallel high-bay

warehouses in themiddle of the graph is represented well. However, Algorithm 1 struggles

to visualize the rectangular structure of the upper part of the circuit. The main reason for

this problem is the use of the Dijkstra’s algorithm. As explained above, by using the latter

we assume that the circuit is straight. Yet, the real-world distances of opposite nodes in
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Figure 20 Example of a graph with two reference nodes

the rectangular structure are shorter than those computed by the Dijkstra’s algorithm.

Neither CMDS nor stress majorization can visualize the upper part of OCS reasonably

well (cf. Fig. 19). To improve the graph, we use reference nodes. Any desired number of

nodes can be used as reference nodes by specifying the exact coordinates of these nodes

in the conveyor system. The idea is to predetermine a frame of reference nodes and to

force the other nodes into that frame. Using the new information of the exact positions

of reference nodes in optimization, we cannot merely remove each row and column of

these nodes in Laplacian Lω ; otherwise, we would lose important information about the

distances of direct connections between reference nodes and the other nodes, and the

visualization of the graph would be worsened.

With the help of Fig. 20, we explain the use of reference nodes in the optimization pro-

cess. The figure shows a graph with four nodes, namely, V = {A,B,C,D}, and the given

edge set E = {eAC , eAD, eBC , eBD}, drawn in black. Nodes A and B are our reference nodes,

and node A is the main reference node with coordinates (0, 0). Node B should be forced

to position (–3,–3), and the other nodes should be drawn according to their computed

distances to nodes A and B. The improved algorithm proceeds as follows: first, auxiliary

nodes (in Fig. 20, gray nodes AN1 and AN2) will be added to our graph, but will not be

visualized in the graph and will be used only for the computation of the optimal graph.

The coordinates of auxiliary nodes can be computed with the help of coordinates of ref-

erence nodes. The reference nodes and the auxiliary nodes have to form a rectangle, as

shown in Fig. 20. Next, we add auxiliary edges (the dashed edges in Fig. 20). Each auxil-

iary node will be connected with each reference node. Additionally, each auxiliary node

and each reference node will be connected if the respective connection does not already

exist. Using the coordinates of the reference and auxiliary nodes, we can compute the ex-

act distances of these nodes or overwrite the distances if the direct connections of these

nodes already exist with different distances. Then, the graph will be optimized with the

help of auxiliary edges. The latter will be weighted very heavily, namely, ωij = 10,000, to

guarantee that the distances of these auxiliary nodes will be drawn exactly by using stress

majorization. Hence, the reference nodes are forced to their intended positions.

If more than two reference nodes are specified, then the algorithm will follow the same

procedure: each reference node will form a new rectangular shape with themain reference

node with coordinates (0, 0). Then, each reference node will be connected with each ref-

erence and auxiliary node, and each auxiliary node will be connected with each reference

and auxiliary node. Finally, the exact distances will be computed, and the initial layout will

be optimized using stress majorization.

Using the method of reference nodes improves the graph. Figures 21 and 22 show the

initial layouts and the results of stress majorization of the circuit of the overhead conveyor

with different numbers of reference nodes. With three reference nodes, Algorithms 1 and

2 can already draw the rectangular structure of the circuit reasonably well. However, the
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Figure 21 Comparison of initial layouts with different numbers of reference nodes

reference nodes have to be located in the rectangular part. To improve the graph, more

reference nodes can be specified. If the optimization process has to consider numerous

reference nodes, then the frame of the graph will become increasingly more restricted,

and parts of the graph can deteriorate. A comparison of the optimal graphs with three

and eight reference nodes shows that the lower part of OCS is visualized more accurately

with three than with eight reference nodes. The optimal graph with eight reference nodes

visualizes these nodes at the determined positions, but the entire graph seems to be con-

fusing because of its significant limitations. Nevertheless, Algorithm 1 of stress majoriza-

tion visualizes the physical structure of the original layout well with the help of reference

nodes.

To verify our method and the coordinates of our reference nodes we use the Procrustes

analysis as proposed in [5]. This analysis compares two matrices X ∈ R
n×a and Y ∈ R

n×a

by determining linear transformations as translation, scaling, reflection and orthogonal
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Figure 22 Comparison of the optimized graphs with different numbers of reference nodes

Table 3 Table of Procrustes analysis for the reference nodes

Number of reference nodes n Procrustes statistic R2

3 0.0632

6 3.9746e–14

8 4.3965e–14

3 (same X– or Y– coordinates) 8.3711e–14

rotation of coordinates of matrix Y to best fit the coordinates of the matrix X. The aim of

the Procrustes analysis is to minimize the sum of the squared errors of the matrix X and

the transformed matrix Y ∗.

In our case, we compare the coordinates of the reference nodes of the original OCS

layout to our result, see Table 3. The Procrustes statistic R2 is in all four cases very small.
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This results verifies that our method is able to draw the structure of the reference nodes

as given in the original layout.

4 Conclusions

In this paper, we applied classic multidimensional scaling and stress majorization to com-

munication data of real-world conveyor systems to visualize the physical structure of such

systems. Furthermore, we introduced two methods to improve the drawings of systems.

We showed that in particular, the specification of reference nodes could help in computing

good graphs similar to the original layout.

Future work might include the adaption of the stochastic gradient descent (SGD)

method from [30] to the real-world problems we have presented in this work.
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