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Preface 

Since the beginning of the industrialization age, engineers have aimed to increase 

productivity and reduce costs. In the last decades, customer orientation has steadily 

gained importance and, thus, short and reliable delivery times have become a 

competing target, combined with a trend to mass customization. Currently, however, 

sustainability aspects are moving into the focus of customers and enterprises. With 

respect to production and logistics tasks, this mainly affects the consumption of 

energy and, in consequence, the emission of greenhouse gas (GHG). This trend has 

been amplified by the dramatic increase in energy costs after the outbreak of the war 

in Ukraine, and mirrored by national and international taxes and regulations, such as 

the European Sustainability Reporting Standards (ESRS). The scheduled Corporate 

Sustainability Reporting Directive (CSRD) will have distinct implications on the 

annual audit and liquidity of companies. 

Methodologies to face these challenges range from the specific acquisition of data 

on energy consumption via the allocation of particular production processes and the 

experimental planning of improvement up to the simulation of how to integrate 

an increasing percentage of renewable energy into current production and logistics 

processes. The use cases of the book promote to apply methodologies that help to 

comply with these upcoming challenges. 

The first applications of material flow simulation have already been reported for 

about 50 years. In the last 40 years, simulation has been successfully introduced to 

analyze and improve first the material flow and later the related information flow, 

enabling engineers to gain deep insights into the behavior of complex modern produc-

tion and logistics systems. Sometimes, energy-related aspects have been considered, 

but in most cases indirectly, e.g., reducing the runtime of equipment and only by this 

measure decreasing the energy consumption. However, the importance of respecting 

energy in the processes has become more and more urgent, and the pressure to reduce 

the environmental footprint of production and logistics systems will intensify in the 

upcoming decade. Therefore, enterprises have started to integrate their consump-

tion of energy into their planning processes much more frequently than before, even 

constructing feedback loops, e.g., from energy control to production control. This 

receives additional attention for the increasing use of renewable, but less reliable,
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vi Preface

energy sources. Care must be taken to establish processes that aim to use energy when 

it is available. As an example, many industrial processes like melting or coating have 

significant energy demands, but could vary the point of time of its consumption 

within specific limits, leading to very high complexity. 

Simulation is the technology of choice for the analysis of such complex inter-

connected systems. Nevertheless, there is no satisfying overview of the current 

approaches and applications of considering energy for production and logistics simu-

lation. The section “Simulation in Production and Logistics (SPL)” of the Asso-

ciation for Simulation in the German-speaking Area (Germany, Switzerland, and 

Austria) (ASIM) responded to the importance of these developments by founding 

the “Workgroup on the Investigation of Energy-related Influences in SPL” in 2014. 

It has gathered an extensive and structured collection of relevant works to shed light 

on the findings of various groups or organizations as well as on knowledge gaps. 

Major results are now published in this book, which, therefore, is also registered as 

ASIM Proceedings No. 182. In Part I, the book introduces the approaches to model 

energy-related aspects in the simulation of production and logistics systems that are 

available today, discusses the construction and application of energy-specific perfor-

mance indicators, and analyzes the input information that needs to be acquired before 

implementing suitable models. On this basis, the technical solutions are introduced. 

Regarding practical implementation and illustration, Part II of the book is divided 

into six chapters, each dedicated to one application field, such as automotive, elec-

tronics, and transportation. In each of these chapters, written by related experts, the 

specific performance indicators and required data are introduced, challenges to the 

conceptual modeling explained with their solution approaches, and, finally, several 

examples given for the application of these approaches. Thus, these chapters can 

support the engineers of the related domains for understanding the scope and tasks 

for a suitable simulation model, and to achieve an estimate of the effort that it might 

require and the benefits it could raise. 

The editors express their gratitude to all members of the ASIM working group 

for the investigation of energy-related influences in SPL for the many discussions, 

the evaluation of numerous articles and papers, and the many years of commitment 

to this topic. Special thanks are addressed to the many authors of this book, who 

invested huge effort and care to provide the readers with an exciting and informative 

experience. 

Kassel, Germany 

Dortmund, Germany 

Ilmenau, Germany 

Hannover, Germany 

December 2022 

Sigrid Wenzel 

Markus Rabe 

Steffen Strassburger 

Christoph von Viebahn



Summary 

Content Description for the Publisher 

Material flow simulation has been successfully applied for about 50 years to analyze 

and improve first the material flow and later the related information flow, enabling 

engineers to gain deep insights into the behavior of complex modern production and 

logistics systems. Sometimes, energy-related aspects have been considered, but in 

most cases indirectly, e.g., reducing the runtime of equipment and in consequence 

decreasing the energy consumption. 

However, in the last decade, the importance of respecting energy in the processes 

has become more and more important, and the pressure to reduce the environmental 

footprint of production and logistics systems will intensify in the upcoming decade. 

Therefore, enterprises have started to integrate the use of energy into their planning 

processes much more frequently than before, even constructing feedback loops, e.g., 

from energy control to production control. This receives additional attention with the 

increasing use of renewable, but less reliable, energy sources. Care must be taken 

to establish processes that aim to use energy when it is available. As an example, 

many industrial processes like melting or coating have significant energy demands, 

but could vary the point of time of its consumption within specific limits, leading to 

very high complexity. 

Simulation is the technology of choice for such complex interconnected systems. 

Nevertheless, there is no satisfying overview of the current approaches and applica-

tions of considering energy for production and logistics simulation. To fill this gap, 

this book introduces in Part I the approaches to model energy-related aspects in this 

context that are available today, discusses the construction and application of energy-

specific performance indicators, and analyzes the input information that needs to be 

acquired before implementing suitable models. On this basis, the technical solutions 

are introduced. 

For the practical implementation and illustration, Part II of the book is divided into 

six chapters, each related to one application field, such as automotive, perishables, 

and transportation. In each of these chapters, written by related experts, the specific
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viii Summary

performance indicators and required data are introduced, challenges to the conceptual 

modeling explained with their solution approaches, and, finally, examples given for 

the application of these approaches. Thus, these chapters can support the engineers 

of the related domains to understand the scope and tasks for a suitable simulation 

model, and to achieve an estimate of the effort it might require and the benefits it 

could raise. 

Target Groups 

The book is targeted to engineers and scientists investigating energy use aspects that 

are connected to the material flow in production and logistics systems in a broad sense, 

including any kinds of transport, buffering, and the control of interrelated processes. 

The provided state of the art helps engineers to select and understand modeling 

techniques that are suitable for their specific tasks. It also forms a sound base for 

further scientific research, and can be used in advanced teaching, e.g., for university 

masters, to educate engineers in this field with massively growing importance: Few 

engineers studying today will not be concerned with energy efficiency topics in their 

business career. For the practitioners, the chapters in Part II of the book give even 

more specific hints on how to handle typical energy-related questions in the specific 

branches, and also provide an illustration of possibilities that engineers can take as 

samples or as a stimulus for their own work. Finally, managers who are responsible 

for decisions in the improvement of energy use and the application of simulation find 

precious samples and can improve their understanding of the technology’s benefits 

and challenges.
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Part I 

General Considerations



Chapter 1 

Classification, Input Data, and Key 

Performance Indicators 

Markus Rabe, Johannes Stoldt, Steffen Strassburger, 

and Christoph von Viebahn 

Abstract Simulation is a well-known technology for production and logistics, espe-

cially for the planning of new systems and the examination of ideas to optimize 

existing ones. In the past, the main target of such studies has been costs of equip-

ment and personnel, but the continuously stricter view on consumption of energy 

has shifted this focus towards the analysis of energy consumption and emission of 

greenhouse gas. In some cases this might be straightforward, e.g., when the resulting 

production hours can just be multiplied with energy consumption per hour. Many 

cases, however, are far more complicated and can only be sufficiently analyzed when 

the detailed dynamics of energy consumption are already considered in the simula-

tion model. Thus, a number of different approaches exist to model energy aspects in 

simulation models, depending on the goal of the investigation and the kind of produc-

tion or logistics process. This chapter classifies these approaches in a morphological 

box and explains the details of the related categories. Furthermore, it discusses the 

requirements to input data that arise when simulation models are amended with 

energy components, and discusses the additional results that can be gained from 

such models.
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This chapter introduces the theoretical background for the integration of energy 

aspects within simulation models for production and logistics. While discrete event 

simulation (DES) is well studied and commonly applied in production and logistics, 

the usage of DES to evaluate energy-related aspects of the studied systems is a 

rather new topic that has gained increasing importance. The range of energy-related 

aspects that may be of interest is just wide. Straightforward items include the electric 

energy and power consumption of the systems under investigation, or, more generally 

speaking, the demand side of the production or logistic system. Nevertheless, every 

production and logistic system also has further energy-related impact that one might 

wish to study, e.g., waste heat or emissions such as carbon dioxide. 

To provide a better understanding of these aspects, this chapter discusses the 

following content: Sect. 1.1 gives a short insight on the method of literature collection 

and summarizes the major past activities of the ASIM working group in this field. 

Section 1.2 presents a classification of the different approaches for the integration 

of energy aspects and illustrates the multiplicity of available options. Section 1.3 

discusses additional input information required for the depiction of energy aspects. 

Section 1.4 introduces key performance indicators that can be extracted and analyzed 

when energy aspects have been integrated into simulation models. 

1.1 Identification of Related Publications 

In this first section, the background of the underlying literature and the research 

methods to acquire the current state of the art are explained. The section “Sim-

ulation in Production and Logistics (SPL)” of the Association for Simulation in 

the German-speaking Area (Germany, Switzerland, and Austria) (ASIM) founded 

a specific “Workgroup on the Investigation of Energy-related Influences in SPL” in 

2014. The members of this workgroup have conducted an extensive and structured 

collection of relevant publications (Wenzel et al. 2017; Uhlig et al. 2018; Poeting 

et al. 2019; Stoldt et al. 2021). Dependencies among key performance indicators 

and the level of detail for modeling energy aspects have been analyzed and their 

effects on specific requirements for simulation input data have been studied by the 

workgroup. Furthermore, particularities that depend on the major scope, as logistics 

or manufacturing, have been investigated (Poeting et al. 2019), with manufacturing 

forming the majority of the found cases. 

Various methodological approaches for literature reviews can be distinguished, 

which primarily differ in the way they try to incorporate quantitative data about the 

identified publications. Meta-analyses exploit several previous studies and mathe-

matically integrate their results. Systematic reviews focus on the effects of specific 

indicators when summarizing existing quantitative studies. Scoping reviews cover 

all kinds of relevant publications, e.g., to identify the coverage of existing knowledge 

as well as recognizable gaps (Sturma et al. 2016). Having in mind the workgroup’s 

intention to understand available competencies and white fields in the simulation
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including energy aspects, the methodology for scoping reviews has been selected as 

the most suitable method, as proposed by Colquhoun et al. (2014). 

The general process following scoping reviews has been described by Uhlig et al. 

(2018) and is summarized in Fig. 1.1. The depicted list of keywords is not applied 

automatically but manually, in order to enable approximate matches filtering for 

relevant work. As of May 2022, more than 200 publications from journals (e.g., 

Journal of Simulation, Simulation, Simulation Practice and Theory, CIRP Annals 

Manufacturing Technology, Journal of Cleaner Production) and conference proceed-

ings (e.g., Winter Simulation Conference, ASIM Conference Production and Logis-

tics, Procedia CIRP) as well as other publication channels (e.g., thesis works) have 

been identified and added to the scoping review’s body of literature. The analyses 

finally led to a set of characteristics for energy-related simulation models, which are 

summarized in a morphological box and explained in the following sections. 

Fig. 1.1 Methodology of the scoping review (Stoldt et al. 2021)
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1.2 Approaches for Integration of Energy Aspects 

When trying to investigate energy-related aspects in conjunction with the DES 

models commonly used in production and logistics, different options exist. An 

obvious—but not necessarily the best—choice might be to augment an existing 

general simulation model with extensions depicting energy-related aspects. The 

decision for a specific approach depends on the available input data, the desired 

output, and the required accuracy. Therefore, in this section, the available options 

are systematically analyzed, including their individual advantages and disadvan-

tages, and prescriptive guidance provided on the selection of suitable approaches 

based on a given context and intended application. To describe the different options 

systematically, a morphological box is proposed with several dimensions illustrating 

the possible variants. This morphological box is also the basis for illustrating the 

different applications discussed in Part II of this book. 

1.2.1 Morphological Box 

The dimensions of the morphological box assess the methodological aspects of 

modeling and simulation (M&S), objectives and result data, additional input data, as 

well as the industry sectors and manufacturing structures that the case studies from 

Part II of this book relate to. Each dimension of the morphological box is subdivided 

into different criteria that shape this dimension. Each criterion can have different 

values and sometimes even sub-values. Overall, the morphological box can be used 

to systematically analyze and classify a certain M&S solution to a domain problem. 

The other way round, it can help in finding and defining a solution to a certain domain 

problem. Starting with the problem domain, the desired result data and objectives, 

and the possibly available input data, one can select an appropriate methodolog-

ical approach for modeling by looking at comparable solutions already classified 

within the morphological box. The different dimensions of the morphological box 

are introduced in Sects. 1.2.2–1.2.5. The complete box is shown in Fig. 1.2.

1.2.2 Dimension 1: Methodological Aspects of M&S 

When integrating energy aspects into simulation models for production and logistics, 

a suitable methodological modeling approach is required. Therefore, the dimension 

“Methodological Aspects of M&S” classifies the different options that have been 

proposed in the scientific literature. 

Modeling approach for energy aspects The first criterion of this dimension is 

the actual modeling approach chosen for the energy aspects of the models. While 

simulation models for production and logistics are traditionally based on discrete
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Fig. 1.2 Morphological box of energy integration aspects

event simulation, modeling approaches for energy aspects can be either discrete or 

continuous. Such approaches can even take an entirely different modeling form, e.g., 

by applying models based on machine learning (ML) or artificial intelligence (AI). 

Discrete approaches are especially suitable when a status-based approach for 

depicting energy aspects is sufficient. As an example, this might be the approach of 

choice for situations where the mean energy consumption can be matched to certain 

machine states (Stoldt et al. 2016). Then, the energy evaluation would be able to 

accumulate energy consumption for all machines and resources in the simulation 

models. The granularity of this approach is limited, as there is no differentiation of 

energy consumption within a certain machine state. Still, for many applications such 

an approach could be sufficient.
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Fig. 1.2 (continued)

If an in-depth investigation of the power consumption over time is required 

(e.g., to investigate or reduce power consumption peaks), more-detailed modeling 

approaches have to be selected. On the discrete side, some authors use prerecorded 

time series data to model energy consumption within machine states at a high resolu-

tion (Römer 2021; Römer and Straßburger 2019). On the continuous side, one may 

choose to model energy consumption based on the physical or chemical properties 

of the depicted production step (Römer et al. 2018; Pawletta et al. 2017; Peter and 

Wenzel 2015). Examples where a detailed continuous model for the energy aspects 

is beneficial include heating and cooling processes in foundries (Peter et al. 2017, 

Sect. 3.4.2). A third modeling alternative that has gained attention in recent research 

is the prediction of energy consumption using ML and AI methods (Wörrlein and 

Straßburger 2020a, b, Sect. 7.6.1). 

Timing of the energy evaluation The second classification criterion within the 

dimension “Methodological Aspects of M&S” relates to the timing of the evaluation 

of the energy aspects. Independent from the architectural approach, the evaluation 

of the energy aspects can either take place concurrently to the execution of the 

simulation model or it can be performed in a retrospective fashion, i.e., after the 

simulation model has been executed. 

The most-obvious choice for a concurrent evaluation is the integration of the 

energy aspects into a unified simulation model of the production or logistics system 

that includes those aspects. Then, the simulation results would typically include key 

performance indicators for the energy aspects, such as the total energy consump-

tion. Other forms for a concurrent evaluation are introduced in the discussion of the 

criterion “Architectural approach”.
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A retrospective evaluation is typically based on classical outputs of the simulation 

model. This output enables application of evaluation measures (e.g., cost functions) 

to convert the usual key performance indicators (KPIs) into energy-related KPIs. 

Examples such as Heilala et al. (2008) are often found in the system design phase, 

where an environmental impact calculation including energy aspects is executed in 

a spreadsheet environment that exploits the results of simulation runs to evaluate 

certain system parameters. 

Architectural approach The criterion “Architectural approach” describes how the 

modeling and evaluation of the energy aspects is combined with the simulation model 

of the production and logistics system from a computer architectural point of view. 

A single model, i.e., an energy evaluation integrated in the simulation model of the 

production and logistics system, may seem an obvious solution. Advantages of this 

approach include the centralization of the model building and the ease of model 

execution. It also qualifies as a concurrent approach and, thus, a further advantage is 

that the energy-related KPIs are directly available after the simulation run, providing 

for easy experimentation with the model. 

Examples of this approach include simulation models based entirely on one (typi-

cally discrete) modeling paradigm (Solding and Petku 2005; Dietmair and Verl 2010) 

as well as hybrid simulation models based on a single simulation system supporting 

multiple modeling approaches (Römer and Strassburger 2019, Pawletta et al. 2017). 

In some situations, it might be impossible or disadvantageous to include the 

energy evaluation in the simulation model itself. Reasons could lie in the desire for 

complexity reduction (Henriksen 2008) or the insufficient suitability of the intended 

tools for a specific purpose. In certain cases, the online coupling of an evaluation 

tool with the simulation tool is the architectural approach of choice (Hesselbach et al. 

2008). 

Such a concurrent execution of the evaluation tool and the simulation tool 

might not always be required. As it also imposes a certain architectural complexity 

concerning the execution and handling of both tools, a simpler version of coupling 

the simulation tools with a suitable evaluation tool is the retrospective evaluation in 

a suitable tool (Heilala et al. 2008; Johansson et al. 2009). 

Another architectural approach for complementing the simulation model of the 

production and logistics system with an energy evaluation is the use of separate 

simulation models for the energy evaluation. Reasons may include the suitability or 

unsuitability of a certain simulation tool for a certain modeling task. The models can 

be coupled either online or offline. In the first case, they are executed concurrently 

in some form of distributed simulation (Peter and Wenzel 2015; Junge 2007). In the 

latter case they are executed sequentially.
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1.2.3 Dimension 2: Objectives and Result Data 

The objective for simulation of energy aspects is often decisive to determine the 

required level of detail for modeling the energy aspects and the result data to be 

collected. A typical objective can relate to the dimensioning and design of the produc-

tion or logistics system and its energy infrastructure. In addition, a typical objective 

can be the optimization of energy consumption and costs. Other objectives include 

a load peak avoidance or reduction (Sects. 7.6.1 and 7.6.2), and, more generically, a 

valid forecast of energy demand. 

Depending on these objectives, different types and resolutions of relevant result 

data will be required. Result data categories include KPIs directly quantifying energy 

aspects, such as energy consumption, energy costs, and power requirements, but also 

energy-related KPIs relating energy aspects of the system to other system output, such 

as the output quantity or the level of supply. Further result data can quantify emis-

sions and environmental impacts. A comprehensive discussion of key performance 

indicators based on result data is given in Sect. 1.4. 

1.2.4 Dimension 3: Input Information for Energy Aspects 

The inclusion of energy-related aspects requires additional input data compared to 

traditional simulation models for production and logistics. First of all, additional 

input data are required to actually model the energy consumption and energy require-

ments of the equipment within the production or logistics system. These data can 

be based on nominal performance data of the equipment (e.g., as provided by the 

equipment manufacturer) or on data obtained from measurements performed on the 

real equipment. Different resolutions of the measured data may be useful depending 

on the study objective. In some scenarios, it might also be beneficial to use physical 

behavior models describing the energy consumption, e.g., based on differential equa-

tions. This can especially be useful if process control parameters that are subject of 

the simulation study influence the energetic behavior of the equipment (e.g., a heating 

rate of a furnace). 

Secondly, additional input data may be needed for a closer evaluation of the energy 

aspects. Here, data about energy sources, energy prices, and energy price models, as 

well as data on emission equivalents may be of interest. A comprehensive discussion 

of input information is given in Sect. 1.3.
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1.2.5 Dimension 4: Industrial Sectors and Manufacturing 

Type 

Different industrial sectors with varying manufacturing types can have different 

expectations and needs when studying energy aspects within their simulation models 

for production and logistics. They should, therefore, be classified accordingly. 

The morphological box distinguishes between the different industrial sectors that 

build the basis for the chapters of Part II of this book. Manufacturing is related to the 

majority of reported work in this field. Nevertheless, the ASIM Working Group has 

purposefully dedicated a separate chapter on automotive manufacturing (Chap. 3), 

as the automotive sector exhibits very specific requirements and applications for 

modeling energy aspects. The additional industrial sectors included in Part II are 

transportation (Chap. 4), retail (Chap. 5), perishables (Chap. 6), and renewables 

(Chap. 7). 

Concerning manufacturing type and manufacturing structure, ASIM has relied 

on traditional classifications. These can have a significant influence on depicting the 

energy aspects. As an example, in make-to-order production, it may prove tremen-

dously complex to obtain accurate measurement data for the energy consumption 

of individual orders, whereas in series production, it could be a one-time effort to 

measure each production step. A further classification according to the scope of 

the model is useful. The range of choices runs from models of entire production or 

logistics networks to models of individual components. 

1.3 Input Information for Depiction of Energy Aspects 

The quality of any simulation’s results is determined by the precision of the model 

and the quality of its input data. Input information comprises both information that 

is used in modeling and data that serve as numerical inputs for the execution of 

simulation runs, which are also called simulation data. When production or logistics 

systems are investigated, these data can be categorized into the following groups 

(Verein Deutscher Ingenieure 2014):

• Technical data: Data of factory structure, production data, material flow data, and 

failure data
• Organizational data: Work time organization, allocation of resources, and 

structural organization
• System load data: Input of orders, production data 

These data primarily concern the flows of material and information (Schenk et al. 

2010). However, incorporating the flow of energy in a simulation study requires 

additional input information. While such “energy data” could be introduced as an 

additional group, it is also possible to integrate the respective information into the 

above list. The following list serves as an example of that integrated information:
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• Technical data: Energy-related equipment data (e.g., power rating, power profiles, 

topology of energy distribution systems, fuel consumption of transport means 

like trucks or vessels, or electricity consumption for temperature regulation in 

warehouses)
• Organizational data: Utility data (e.g., contractual restrictions with energy 

supplier, energy market regulations, emission rules in geographic regions, or 

assumptions on the electric power mix)
• System load data: Energy procurement data (e.g., energy prices or availability of 

natural or market resources) 

Which data are specifically required when depicting energy aspects in a simulation 

study greatly depends on the scope of the analysis. Data about the energy input or 

output of equipment will be a requirement in most cases, albeit in different form. 

Hence, they are usually a prime focus, especially when DES for manufacturing and 

logistics use cases are enhanced with energy-related aspects. Various approaches to 

modeling energy in DES are classified in Fig. 1.2. Likewise, a variety of different 

energy-related input data can be classified, where major groups are:

• Nominal performance data (time-dependent): Average consumption per unit of 

time, e.g., in Nm3 compressed air per hour of operation or liter diesel per driven 

distance
• Nominal performance data (time-independent): Power rating of equipment, e.g., 

in kW
• Measurement data of the real system: Actual power demand or consumption over 

time, e.g., as a time series of voltage in V and current in A of an electric device 

over time
• Physical behavior models: Analytic or numeric model of the actual energy input 

of a device (that can typically be parameterized for specific use cases) to be used 

as an online or offline source of energy-related input data, e.g., a computational 

model of a furnace
• Other: Other secondary measures that relate directly or indirectly to the input of 

energy or emissions of relevant equipment, e.g., energy costs per hour of operation 

or Life Cycle Inventory (LCI) equivalent in tons of CO2 per km driving distance 

The elaborations given here primarily refer to energy input for the sake of simplicity, 

but can also be applied to output. Especially for technical data and depending on 

the applied modeling approach, a suitable data acquisition method must be selected 

to collect necessary input data. Table 1.1 summarizes methods that are typically 

employed for that purpose (cf. Kouki et al. 2017; Schmidt et al. 2015; Stoldt 2019; 

Weinert 2010) and their applicability for the acquisition of the above types of input 

data.

While this list is intended to be exhaustive, each entry classifies a variety of data 

acquisition processes. These follow a general concept, but can differ in the specifics, 

e.g., spot measurements could be applied on a work group level, on a machine level, 

or even on a device level. To be economical in the execution of a simulation study, 

it is suggested that efficiency is considered for any selection of a data acquisition
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method. Efficiency is generally understood as an input–output ratio. The input here 

comprises all efforts that contribute to realizing the data acquisition. They can be 

attributed to planning and preparation, actual data acquisition, as well as additional 

costs (e.g., for new measurement equipment). The output comprises factors such 

as general applicability of a method, expected quality of the data to be generated, 

resolution of the resulting data, and immediacy of the application (i.e., how quickly 

the method can be applied). In order to identify and select the most-efficient method 

in a simulation study, the following heuristic process can be applied (Süße et al. 

2017): 

1. Analyze problem and define target for the data acquisition: Definition of required 

information, ex ante or ex post simulation, and level of detail as well as resolution 

to be achieved 

2. Identify and choose alternatives: Preliminary selection of potentially suitable 

methods and data acquisition processes 

3. Decide on decision criteria: Definition of qualitative and quantifiable criteria to 

measure the necessary input and the achievable output 

4. Determine environmental situation: Identification of surrounding influences that 

might affect individual or all criteria 

5. Overall assessment of alternatives and decision-making: Valuation of criteria and 

determination of highest efficiency, as well as final decision 

While the first four steps of the suggested heuristics have arguably little struc-

ture and require both know-how and creativity from the project team, Step 5 can 

be supported by more-structured decision-making tools. Specifically, the analytic 

hierarchy process or utility value analysis methods (Götze et al. 2015) can be used 

to support the valuation. 

A guiding principle according to VDI 4633 Part 1 states that “Modeling accuracy 

should not be as detailed as possible, but as detailed as necessary to fulfil the given 

targets” (Verein Deutscher Ingenieure 2014, p. 6). This is of particular importance 

when energy aspects are modeled in addition to the flow of materials. Overall, the 

target measures to be quantified in the simulation need to be appropriate to the scope 

of the simulation study, the modeling must be suitable to serve the measures, and 

the data acquisition must be sufficient for the modeling requirements. As such, it 

is impractical to collect needlessly precise and high-resolution data on the energy 

input or output of system elements, when only a very highly aggregated consumption 

measure is sought. If high-resolution data or physical or numerical simulation models 

are reused or also collected for other purposes, it may be necessary to apply pre-

processing that reduces the quantity of data provided to the simulation. 

Nevertheless, there are no general rules that suggest a resolution for input data 

based on the measures to be quantified through a simulation. Studies on machine 

tools have demonstrated, however, that machines with different technologies exhibit 

substantially different load cycles and distributions of demand between individual 

machine parts (Wegener and Weiss 2014). Accordingly, it is suggested to take these 

aspects as well as the scope of the investigation into account when deciding on the 

resolution of input data to be acquired. The scope is best considered when asking the
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question: What is the economic or technical aspect that is focused on in the study? 

For instance, billing by utility companies takes the overall electric work in Wh as 

well as the 15-min maximum power demand in W into account. If billing-relevant 

measures are within the scope and the maximum power demand can be assumed 

to be of little interest, due to low resolution data, only the margin of error must 

be considered when deciding on the resolution of input data. On the contrary, if 

technical questions regarding the suitability of an unbuffered energy generator are 

considered, it is of great importance to know exactly when multiple peaks overlap 

within the system. For such studies, a high-resolution and precise knowledge on the 

uniformness of patterns as well as on sources for disturbances in the energy input 

and output behavior are required. 

Just like other simulation data, energy-related input information requires verifi-

cation and validation (V&V) to ensure that the simulation results are sufficiently 

accurate with respect to the (future) real-world system. The V&V methods to be 

applied for that purpose are the same as for simulation that disregards the flows of 

energy, including verification techniques such as extreme condition tests and sensi-

tivity analyses as well as validation approaches like face validity and touring tests 

(cf. Banks et al. 2005; Rabe et al. 2008). Typically, the most-difficult aspect to vali-

date is the energy input or output of the system over time. Experience shows that 

energy-related input data should be validated on the lowest possible level rather than 

the system level to avoid the possibility that errors in the input data of individual 

elements mutually compensate in a specific reference scenario, but stack when other 

circumstances are simulated. Ideally, this validation has already been conducted on 

the input data provided to the simulation, e.g., by comparing the energy consump-

tion profile to be used with multiple instances of the same cycle measured from real 

equipment. This comparison can be conducted in a qualitative manner using graphs 

or by performing a regression analysis. When no such possibility exists, because, for 

instance, the system to be simulated has not yet been implemented, it is even more 

important to estimate the margin of error to be expected for each system element. 

This can help to assess the modeled system’s overall margin of error. 

1.4 Key Performance Indicators 

The identification and the respective selection of key performance indicators (KPIs) 

is a crucial step that has to precede almost any planning task and most certainly 

any simulation model development (Verein Deutscher Ingenieure 2014). Typically, 

abstract and highly aggregated targets need to be broken down into measurable or at 

least more easily assessable targets. An example would be the analysis of different 

production control strategies with the overall objective to maximize profitability, 

which could be broken down into the minimization of throughput times, inventory, 

and schedule deviations, as well as the maximization of capacity utilization (Verein 

Deutscher Ingenieure 2014). Depending on the actual context of an investigation or 

planning activity, even-more-technical considerations and KPIs become important,
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when energy is considered as a prominent aspect. For instance, the dimensioning of a 

compressed air system requires specific information on the consumption of different 

consumers, enabling the calculation of demand coverage to assess the viability of 

a proposed supply setup. In light of these considerations, it is apparent that prac-

tically relevant energy-related KPIs can be manifold. The categories of such KPIs 

and corresponding result data that are typically relevant in production and logistics 

applications have been shown in Table 1.1. These are further explained in Table 1.2.

These categories can be characterized based on their scope (flow-item-related or 

system-related) and their relation to time (Fig. 1.3). It is apparent from these char-

acterizations that the result data of simulation studies can differ significantly from 

analytic calculations. At the same time, there are also significant overlaps. For the 

purpose of this chapter it is assumed that the reader has a solid understanding of simu-

lation worthiness (Verein Deutscher Ingenieure 2014). Therefore, the remainder of 

the elaborations will omit a discussion of when simulation would not be an appro-

priate tool and instead will focus on aspects where it can serve to provide additional 

insights.

In contrast to static or analytic methods, simulation provides capabilities to effec-

tively model and analyze the dynamics of systems concerning their energy consump-

tion or emission behavior. As such, it can provide greater precision insights in the 

following ways:

1. Dynamic influences among elements Static approaches can require the defini-

tion of certain load or requirement scenarios, from which conclusions on the 

respective demand or emission behavior can be drawn. Dynamic influences 

between elements are only considered using empirically obtained concurrency 

factors or similar measures along with possibly substantial security factors. While 

this can be a feasible and a valid procedure in many cases, it is primarily masking 

missing knowledge about the system’s specifics. Simulation can contribute 

to transparency in such situations, because the actual system behavior (albeit 

potentially abstracted) is modeled. Hence, concurrency scenarios among system 

elements can be created within the simulation and conclusions drawn from these. 

Such considerations will naturally require the application of time-dependent KPIs 

that are mostly focused on the system and its elements. 

2. Stochastic influences of elements Besides dynamic influences, stochastic influ-

ences are a primary source of imprecision for static approaches to the dimen-

sioning of energy systems. Accordingly, they are also mostly respected using 

concurrency and safety factors. Simulation, on the other hand, can be used to vary 

the influence of stochastic properties in a structured manner. Thus, it is possible 

to determine with greater confidence expectable extreme scenarios that must be 

considered when considering time-dependent KPIs. Furthermore, the calculation 

of time-independent KPIs can benefit from the simulation of stochastic influences 

and establish a more-reliable level of confidence. 

3. Time-dependence of constraints Simulation also provides significant benefits 

when constraints, which must be observed in the calculation of KPIs, are time-

dependent themselves. For instance, when energy prices or energy supply change
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Table 1.2 KPI and result data categories for energy-related simulation studies 

Category Description Exemplary KPIs 

Energy consumption KPIs that measure the consumption of energy 

on an arbitrary level of the system hierarchy. 

Depending on the scope of the study, only a 

single summarizing value or time series data 

are sought. They are usually focused on a 

single energy carrier (e.g., only to electricity) 

System electricity 

consumption in kWh 

Compressed air 

consumption within 

5-min intervals over time 

in Nm3/min 

Energy consumption per 

product in kWh/piece 

Energy costs KPIs that quantify the economic impact of 

energy consumption. While generally 

determined from the energy consumption, the 

underlying pricing model can vary depending 

on the scope of the study. Costs can be 

aggregated over multiple energy carriers 

(e.g., gas and electricity) 

Natural gas costs in e 

Overall electricity costs in 

e/h operation 

Energy costs per product 

in e/piece 

Power requirement KPIs that can be used to assess the power 

requirements of energy infrastructure 

systems. They are generally time-dependent, 

but can be broken down to specific aspects of 

the time series data (e.g., peak load). The 

focus is only on a single energy carrier 

Peak electricity load in 

kW 

Average off-shift load in 

kW 

Electric power demand 

over time in kW 

Emissions and 

environmental 

impacts 

KPIs that measure the emissions and 

environmental impacts of a system directly or 

indirectly. They are similar to energy 

consumption KPIs, but typically rely on 

equivalence data (e.g., kgCO2/km) and could 

be determined indirectly (e.g., from 

electricity consumption). Typically, no time 

series data are sought 

NO2 emissions in t NO2 

Emitted CO2 equivalent 

in t CO2 

Primary energy demand 

per product in MJ/piece 

Energy-related key 

performance 

indicators 

KPIs that quantify specific aspects of the 

energy conversion and transmission systems. 

Exemplary aspects are level of supply, 

self-sufficiency ratio, energy output (e.g., as 

heat) of individual system elements, load 

balance, etc. They are focused on a 

single-energy carrier 

Self-sufficiency ratio for 

electricity system (e.g., 

with photovoltaic 

self-supply) in % 

Waste heat in J 

Utilization ratio of air 

compressor in % 

Other KPIs that allow for the qualitative or 

semi-quantitative assessment of 

energy-related aspects through surrogates. 

Surrogates have a proven but not quantified 

relationship to the consumption of energy 

Time shares for operation 

states in % 

Value added ratio of 

energy-consumption in %
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Fig. 1.3 KPIs for energy-related aspects (adapted from Uhlig et al. 2018, 3281)

over time, it becomes increasingly complex to correctly include their respective 

changes in a static or analytic calculation. Their effects can be attributed more 

easily to both time-dependent and time-independent KPIs with a system-related 

or a flow-item-related scope utilizing simulation.

4. Time series analysis While static methods allow for calculating results for 

different scenarios, they generally are not well-suited to aggregate the behavior 

of multiple individually operating elements over the course of time. In contrast, 

simulation provides the means to collect and export results as time series data. 

On this basis, other methods (e.g., time series analysis, machine learning, regres-

sion analysis, etc.) can be applied to create additional insights on the subject 

matter. Such post-processing is not necessarily required to obtain knowledge on 

certain aspects of time series data from a simulation. Alternatively, triggers can 

be implemented into a model to collect, for instance, maximum peak load data 

during simulation runtime. 

5. Scenario building The utilization of static and analytic methods can be facilitated 

with a variety of means, e.g., pen and paper, spreadsheet software, or computer 

algebra system (CAS) software. However, even when software is used, it requires 

the executing engineer to follow certain design patterns that allow for the execu-

tion of scenario experiments later. The general process of simulation studies as 

well as the setup of modern simulation tools ensures that experimentation can 

always be facilitated with reasonable ease. Thus, KPIs can be recalculated for 

different and possibly incrementally defined scenarios.
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A primary prerequisite to attain a benefit from using simulation in the calculation of 

KPIs is that the modeling actually adds an aspect to the calculation that would other-

wise not be assessable. For instance, if simulation was used to quantify the energy 

costs of a system that is modeled without stochastic, dynamic, or time-dependent 

influences, this could be done using static or analytic means. On the other hand, if the 

energy prices vary over time or are also dependent on the peak load within 15-min 

intervals, this can be difficult—if at all possible—to assess analytically or with static 

spreadsheet calculations. 

The above elaborations have already referenced various energy carriers that are 

used in production and logistics. From a physical point of view, the most-prevalent 

types of energy being used in these sectors are chemical energy (e.g., fuel), electric 

energy (electricity), kinetic energy (e.g., compressed air), and thermal energy (e.g., 

coolant liquid). KPIs can focus on any of these and may also cover multiple stages of 

energy conversion, e.g., overall electricity consumption that takes the consumption 

of a compressed air system along with the direct consumption of electricity of all 

system elements into account. Whether such multi-stage considerations are sensible 

or whether all energy carriers in a system need to be observed strongly depends on the 

goals of the task at hand. Furthermore, sometimes they can be abstracted altogether, 

especially when KPIs on emissions, emission equivalents, or environmental impacts 

are sought. 

The consideration of costs provides additional challenges that go beyond the 

modeling of the physical flows of energy. Pricing can follow several constraints 

that must be observed with great care, prompting for specific in-depth knowledge 

on the price-making mechanisms during the modeling phase. For instance, the 

overall electricity costs for industrial companies often split into two components: (1) 

consumption-based pricing, and (2) load-based pricing. The former is the product of 

consumed electricity (i.e., electric work) and agreed price per unit of measurement. 

The latter is determined through the highest load during a 15-min interval throughout 

the billing period. Further intricacies stem from the pricing of certain commodities, 

such as natural gas. They can be of great importance when long periods of time are 

being analyzed. Lastly, energy costs for energy carriers that are locally converted 

(e.g., compressed air), but sometimes also those which are directly sourced, actually 

comprise fixed as well as variable costs. Whether both aspects are included in the 

KPI calculation must be determined based on the specific task. From an accounting 

perspective, fixed costs and their allocation over time or system elements can be 

delicate. Therefore, special care must be taken during the modeling phase. 

The trend towards the increasing integration of renewable energy sources into 

the power grids but also for on-site energy generation has broadened the scope for 

energy-related KPIs in production and logistics. On the one hand, new KPIs, such as 

the self-sufficiency in electricity supply, have become of interest for simulation. On 

the other hand, established KPIs were repurposed (e.g., to quantify system loads for 

thermal cooling or heating for the dimensioning of geothermal facilities) or required 

more extensive calculations for their quantification (e.g., when CO2 emissions are 

compensated through the partial generation of renewable electricity).
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Chapter 2 

Manufacturing 

Sebastian Thiede, Antal Dér, Marc Münnich, and Thomas Sobottka 

Abstract The manufacturing industry is responsible for a large share of global envi-

ronmental impacts (e.g., greenhouse gas emissions) that can mainly be tracked back 

to energy demand. This energy demand is determined by a diversity of processes 

and machines, which dynamically interact in process chains and with other factory 

elements such as technical building services (TBS). Given that, system-oriented 

material flow simulation with inclusion of energy aspects bears the potential to 

support the energy transition of industry through fostering both energy efficiency 

and substitution towards renewable resources. The chapter addresses the necessary 

background as well as common aspects in the context of energy-oriented manufac-

turing system simulation. Four manufacturing case studies underline the feasibility 

and potential of available simulation approaches for improving energy-related envi-

ronmental impacts and also costs. Additionally, an outlook towards potential future 

research steps is given.
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2.1 Introduction 

Industry is responsible for a major share of human-induced global environmental 

impacts—as just one example, the industrial sector counts up to around a third of 

global greenhouse gas emissions. This includes direct and indirect emissions along 

the whole manufacturing value chain with both process industry and discrete manu-

facturing industry (IPCC 2014; Thiede 2021). The major share of these emissions is 

caused by the energy demand of production processes and the factories as a whole. 

The remainder of this chapter is organized as follows: Sect. 2.2 contains an 

overview of the scope and objectives for the simulation of energy aspects in manufac-

turing systems in general. In Sect. 2.3, the simulation approaches in this application 

field are discussed. The following four sections illustrate these with different kinds 

of related examples. The chapter ends with a short conclusion and outlook for further 

developments (Sect. 2.5). 

2.2 Scope and Objectives 

Figure 2.1 exemplary shows the composition of the carbon footprint of an automotive 

factory over a period of 30 years (Gebler et al. 2020). Quite clearly, the energy 

demand of the use phase is dominating here, followed by the embodied emissions 

of the technical equipment and necessary auxiliary materials to run the factory. But, 

these emissions are also caused by energy demand that was needed for producing 

this equipment and material upstream at their respective suppliers. The figure also 

clearly underlines the necessity of a holistic factory system understanding: A factory 

consists of three main elements—the production equipment (e.g., milling or turning 

machines), technical building services (TBS, e.g., HVAC—heating, ventilation, air 

conditioning, energy supply) and the building shell (Thiede 2012, Fig.  2.2). The 

design and control of those elements and their interaction eventually determines 

the energy demand of the factory. Related to the changing operational states of all 

elements, the total energy demand is not static but very dynamic. Figure 2.3 shows 

a typical resulting load profile, which represents the total energy demand over time 

(Dehning et al. 2019). Characteristic indicators like base load or occurring peaks 

are of interest for companies for analysing, benchmarking, reporting, and improving 

energy demand.

In order to achieve a reduction of energy-induced environmental impact in manu-

facturing, two main strategies can be distinguished (Table 2.1, e.g., described in 

Thiede 2021). Energy efficiency aims at improving the ratio of production output 

(products) and the necessary energy input. Therewith, the specific energy demand 

per product would be decreased. In contrast to that, energy flexibility rather addresses 

the effectiveness strategy, e.g., aiming at substitution of energy carriers to less costly 

or renewable alternatives. This can be facilitated through synchronizing the manu-

facturing energy demand with the current energy supply. Therewith, high energy
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Fig. 2.1 Carbon Footprint of an automotive factory (adapted from Gebler et al. 2020) 

Fig. 2.2 Overview holistic factory system understanding (adapted from Thiede 2021) (TBS:  

technical building services) 

Fig. 2.3 Exemplary energy load profile of an automotive factory (adapted from Dehning et al. 

2019)
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Table 2.1 Fields of action for improving energy-induced environmental impact in factories 

Energy efficiency Energy flexibility 

Idea Improving the ratio of valuable 

output and energy input in 

manufacturing 

Time-based alignment of 

manufacturing energy demand to 

energy supply 

Potential 

sustainability impacts 

Efficiency strategy with 

stronger decoupling of output 

and input leading to potential 

savings while keeping the 

output 

Effectiveness strategy while shifting 

(potentially higher) energy demand to 

times of lower costs or lower 

environmental impact. Potential 

energy autarky with renewable energy 

sources 

Enabling technologies Technical measures for 

improving the efficiency of 

technical systems, e.g., more 

energy-efficient drives and low 

idle energy demand 

Technical systems for the necessary 

flexibility potential, energy storage 

typically needed to utilize full 

potential 

Methods and tools Data-based modeling and simulation for energy data analysis, 

identification of most-relevant subsystems and influencing factors as 

well as derivation and virtual testing of improvement actions 

demand shall be shifted to time slots with lower costs or less environmental impact, 

e.g., when a high share of renewable energy sources is available in the electricity grid 

or even through on-site generation. This can play an important role for improving 

the environmental impact and energy autarky of the specific company. But, given 

the energetic relevance of manufacturing industry, this is also relevant for the overall 

transition of energy grids. Both technical and organizational measures are possible 

to increase energy efficiency or flexibility (many examples can be found in, e.g., 

Sauer et al. 2019). However, strong interdependencies are given among all factory 

elements and towards other key performance indicators in manufacturing systems. 

2.3 Energy-Oriented Simulation Approaches 

for Manufacturing Systems 

As indicated, considering dynamic interdependencies in the whole manufacturing 

system is important when analysing and improving energy demand. Even more, 

energy is of course only one perspective, while other production key performance 

indicators related to output quantity, time, quality, or costs need to be taken into 

account as well. All these aspects call for using manufacturing system simulation 

and a respective consideration of energy demands. 

Using simulation for improving planning and operation of manufacturing systems 

is established for several decades. However, energy-related aspects were just intro-

duced in the last 10–15 years. Thiede et al. (2013) gave an early overview of respec-

tive approaches. A more recent state-of-the-art analysis can be found in Walther and
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Fig. 2.4 Paradigms for energy oriented manufacturing system simulation (Thiede 2012; Herrmann 

et al. 2011) 

Weibold (2021). In general, three paradigms for energy integration can be distin-

guished (Fig. 2.4). Paradigm A adds an external energy evaluation to the simulation 

environment (e.g., simulation engine provides production data, which will be exter-

nally used for energy demand calculation). With paradigm C, this energy considera-

tion is directly included in the same environment. Paradigm B couples the production 

simulation with further modules (e.g., to integrate technical building services), either 

internally in one software environment or through coupling of different tools. 

Another recent analysis of energy-oriented simulation publications over the 

years (Fig. 2.5) confirms the rise of the topic as such but also the variety of approaches 

and their connections to different paradigms (Stoldt et al. 2021). Figure 2.6 illustrates 

the deployed simulation architectures and connected simulation tools. All described 

paradigms can be found, but especially paradigm C has been on the rise in the last 

years. A major reason lies in the integration of energy-related aspects into the tool 

Siemens Plant Simulation, which is an established simulation software in research 

and industry. Therewith, entry barriers for integrating energy aspects were signifi-

cantly lowered. However, when it comes to coupling of different models, also other 

simulation tools (e.g., AnyLogic, Matlab) or simply proprietary developments play 

a strong role as well, e.g., if physical energy system behavior is to be modeled or 

simulation-based optimization requires high simulation computing performance.

2.4 Applications 

On this background, in the following sections four case studies will be presented 

that depict different approaches for an energy-oriented simulation of manufacturing 

systems. All those cases consider different energy flows to eventually improving 

energy-induced costs or the carbon footprint of manufacturing (or other environ-

mental impacts), while taking general production performance objectives (e.g., time, 

utilization) into account as well. However, as depicted in Table 2.2, the approaches
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Fig. 2.5 Analysis of approaches for energy-oriented factory simulation (Stoldt et al. 2021)

differ significantly in terms of considered types of processes and factory elements as 

well as underlying simulation architectures and tools (Table 2.2).

2.4.1 Heat Treatment in a Casting Company 

This case study is situated at an Austrian casting manufacturer and focusses on the 

simulation-based optimized planning of heat treatment processes, considering a goal 

function that includes energy efficiency alongside traditional economic goals (costs-

or profit-driven) in production planning and control (PPC). A more-detailed descrip-

tion of this case can be found in Sobottka et al. (2020). Cast steel production is an 

energy-intensive production. Therefore, rendering energy optimization via planning 

and control in this industry is especially beneficial. The heat treatment furnaces and 

transient heat-exchange interactions with their surroundings as well as the processed 

workpieces constitute a complex thermodynamic behavior, which is captured simul-

taneously with the production logic and material flow behavior in a suitable planning 

method via a hybrid discrete–continuous simulation.
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Table 2.2 Case study comparison 

Case study 1: 

Casting company 

Case study 2: 

Machining 

process chains 

Case study 3: 

Hot forging 

process chains 

Case study 4: 

Battery cell 

factory 

Application 

domain/focus 

processess 

Heat treatment 

processes 

Machining 

processes 

(milling, 

turning etc.) 

Hot forging 

process chains 

Battery 

manufacturing 

process chain in 

factory context 

Energy carriers Electricity, gas Electricity Electricity Electricity, gas 

Factory elements Furnaces, energy 

supply system 

Diverse 

machine tools 

Diverse 

production 

machines 

Production 

machines, 

compressed air, 

HVAC 

Simulation 

architecture 

Hybrid 

continuous-discrete 

simulation, 

production and 

energy system and 

evaluation/ 

optimization in one 

tool 

Agent-based 

modeling and 

simulation in 

one tool 

Discrete event 

simulation with 

integrated 

energy 

evaluation 

Hybrid 

co-simulation 

with coupled 

models 

Main tool for 

implementation 

Free programming/ 

own development 

Anylogic Plant 

simulation 

Anylogic and 

Matlab Simulink 

Fig. 2.6 Cumulated number of publications over time (Stoldt et al. 2021)
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2.4.1.1 Objectives 

The system in the case study comprises of the loading of work pieces on to grates, 

which are then lifted to input buffers of one out of five parallel heat treatment furnaces. 

Four of the furnaces run on natural gas and one is powered by electricity. Upon 

exiting the furnaces, the workpieces are forwarded by the same crane to different 

cooling stations. There are roughly 150 different heat treatment programs, consisting 

of nine different heat treatment processes (clearing, annealing, warm-up, relaxation, 

glowing, normalizing, air/water/oil-based steel tempering), all differing in their indi-

vidual temperature profiles and heat treatment durations for each individual product 

type. Technological restrictions apply concerning which program is executable on 

a given furnace. The upstream casting process and its schedule are input parame-

ters for this case study. Downstream, beyond the system boundaries, there are less 

energy-intensive machining operations that are less risky to form a bottleneck for the 

entire system. The actuating variables for the planning method are: batching of orders 

to furnace grates, assigning the batches to furnaces, scheduling and sequencing the 

processing of the batches in the furnaces, and controlling the furnaces (times for 

switching the machines on and off and, thus, control of the heating process). 

2.4.1.2 Setup of the Simulation Approach 

In the planning method, a simulation-based optimization is implemented, utilizing 

the hybrid simulation of the production system as an evaluation function for an 

optimization. An overview of the entire method is shown in Fig. 2.7. In this setup, 

the optimization modulates the actuating variables and initiates multiple simulation 

runs to evaluate the fitness of intermediate solutions via a multi-criteria objective 

function, until the stopping criteria – allowed optimization time or convergence of 

the goal fitness values—are reached (Sobottka et al. 2018).

Concerning the above-mentioned energy simulation paradigms, the simulation 

approach at hand is a special form of C in Fig. 2.4): the production simulation (DES) 

is integrated with a simulation for the energy system (a continuous simulation). 

However, the integration is not implemented by connecting two or more simulators in 

a co-simulation, but at a building block level of the simulator (Sihn et al. 2018). Each 

simulation building block, atomics, can create and process events as well as solve 

differential equations, thus directly enabling interactions between thermo-physical 

behavior and production-logic events. With the hybrid building blocks, complex 

models can be built. This also allows for an object-oriented modular simulator, 

for which libraries of frequently used production system elements, such as basic 

machine types of logistics equipment, can be developed, instantiated, and reused in 

new applications. This novel simulator increases the level of integration between the 

simulation domains—in co-simulation, integration is limited by computing effort— 

and it also improves the practical applicability of the method, since models or parts 

of models can be reused, reconfigured, and applied to new cases more efficiently
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Fig. 2.7 Planning method with hybrid simulation at its core (Sobottka et al. 2020)

than with co-simulation, where re-use of model elements is usually infeasible (Sihn 

et al. 2018). 

The developed optimization method consists of a multi-stage optimization, 

hybridizing rule-based heuristics with metaheuristics. The first stage of the opti-

mization is an order batching heuristic that prioritizes the technically demanding 

orders – those that require a special furnace – over those that can be processed on 

all furnaces. It creates “crystallization points” for pressing, technically demanding 

orders and fills up the associated furnace grates with suitable other orders, according 

to their due dates and in a certain due date range. 

The following second stage, a deterministic exchange-based heuristic, evalu-

ates pairwise exchanges between similar—in duration and technological require-

ments—batches with the simulation as a fitness evaluation. With the given problem 

complexity, this heuristic can evaluate all exchange opportunities enumeratively. 

Taking the results of the exchange heuristic as the initial solution, the third opti-

mization stage, a customized genetic algorithm (GA), modulates the timeslots and 

sequence of batches in the furnaces, also using the simulation as its evaluation 

function. 

2.4.1.3 Results 

Experimental studies for the case study have been conducted with historical data from 

the real-world production. With planning horizons of two weeks, the production plans 

were optimized using the developed multi-stage-multi-method approach. The opti-

mization quality was evaluated compared to the manual planning results provided 

by the production planners. These manual reference results were roughly equivalent
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to the results of the first optimization stage, the batching heuristic. Concerning the 

global fitness value of the objective function, the optimization was able to achieve a 

10% improvement, with the energy costs improved by 6%. The associated CO2 emis-

sions, extrapolated to yearly savings, can be reduced by 200 tons per year. Figure 2.8 

shows the fitness value trends of the objective function during the optimization. The 

optimization was itself optimized, through parametrization and customized opera-

tors, to achieve good planning results in a timeframe suitable for a rolling horizon 

planning in MES/APS, i.e., overnight runs and shorter runs to timely react to sudden 

changes in the real-world production environment, such as personnel and material 

availability issues, machine breakdowns, or changed customer requirements. For this 

efficient optimization the hybrid approach with rule-based heuristics at the start of 

the optimization is the key. With no or at least only few computationally expen-

sive simulation runs, these heuristics can realize most of the optimization potential, 

mimicking the decisions of manual planners, but with more consistency and auto-

matically. Based on a good initial solution from the heuristics, the metaheuristics 

can utilize further optimization potential. It must be noted that for practical plan-

ning tasks, the oversight and—if necessary—intervention within the entire planning 

process from manual planners with lots of experience is still advisable, since not all 

current information can be economically modeled in the automatic planning methods. 

In an additional scenario, flexible spot market prices were considered for elec-

tricity and provided as input for the optimization module. The feasibility of using the 

method to synchronize industrial energy demand with fluctuating energy availability 

was shown. However, in this specific scenario, the additional optimization potential 

was limited, amounting to ~1% of the energy costs. This is largely due to (i) a limited

Fig. 2.8 Optimized planning—goal trends (Sobottka et al. 2020), GA: genetic algorithm 
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lever, as only one of the furnaces is electric, (ii) low energy prices compared to the 

other sub-goals, and (iii) the circumstance that for the considered time the furnaces 

were utilized for almost the entire available on-shift time, thus leaving very little room 

for micro adjustments in the production schedule. Nonetheless, the overall potential 

for such a digitized automatic energy synchronization is significant, considering the 

large number of companies that currently do not coordinate their energy use with 

energy providers on the one hand and the challenges of the global energy transition 

towards renewables on the other hand (cf. Sauer et al. 2019). 

The hybrid simulation provides energy evaluation of the production plans and 

does not rely on fixed energy consumption profiles, but models the time-dependent 

interactions between material and energy flows and can include energy exchanges 

among production equipment as well as with its periphery, e.g., building areas and 

technical building services (TBS). For example, loading the furnaces must wait for 

pre-heating to be completed, which in turn depends on the starting temperature and 

the current outside temperature. With the simulation, the optimization can consider a 

variety of technological as well as organizational restrictions in real-world application 

environments. Therefore, it is well suited for practical applications compared to 

more theoretical approaches from operations research. The integrated simulation 

and optimization approach, implemented in a rolling horizon planning, could be the 

core element of an energy-aware digital twin for complex production systems. 

2.4.2 Metal-Machining Process Chains 

With respect to the ever increasing need for a transition towards an environmentally 

sustainable economy, manufacturing companies need to incorporate sustainability-

related goals in the operation and especially the planning of manufacturing facilities. 

Acknowledging the manifold interrelationships among factory elements and trade-

offs between goal criteria, the integrated evaluation of technical, economic, and 

environmental objectives remains a challenging task. This case study covers the 

energy-oriented planning of a highly automated crankshaft production line within 

automotive component manufacturing. Further information can be found in Labbus 

(2021), Schmidt (2021), and Labbus et al. (2018). 

2.4.2.1 Objectives 

Figure 2.9 displays a reference planning process and positions methods and tools to 

respective planning phases of the crankshaft production line (Schmidt et al. 2017; 

Labbus et al. 2018). During concept planning, the energy value stream method is 

applied for line balancing, estimating the production´s energy demand as well as the 

product´s energy intensity. With respect to the available planning data and the existing 

uncertainties during this phase, static calculations are sufficient. During detailed 

planning, energy-oriented modeling and simulation is applied, in order to account for
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the dynamic interactions inside the process chain. Thereby, a feedback loop from the 

operation stage (technology analysis) traces back energy, media, and operation data 

to the previous planning phases. The simulation can either be applied for planning of 

new process chain configurations or investigating different improvement measures 

on an existing production line. 

As indicated in Table 2.3, machining processes (e.g., turning, grinding) are 

predominant in the crankshaft process chain. However, an energy-intensive heat 

treatment process is involved as well. 

Fig. 2.9 Methods and tools for the energy-oriented planning of process chains, based on Schmidt 

et al. (2017) and Labbus et al. (2018) 

Table 2.3 Process chain of 

crankshaft production
Nr Process step 

10 Cutting into length, centering 

20 Turn broaching 

30 Turn milling 

40 Boring 

50 Induction heating and relaxation 

60 Boring 

70 External cylindrical grinding 

80 External cylindrical grinding 

90 Boring, threading 

100 Face grinding 

110 External cylindrical grinding 

120 Boring, internal cylindrical grinding 

130 Balancing 

140 Boring 

150 Finishing 

160 Measuring 

170 End washing
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2.4.2.2 Setup of the Simulation Approach 

The underlying logic of the modeling and simulation approach is shown in Fig. 2.10 

(Dér et al. 2022). The top level of the approach encompasses a generic process 

chain, which is composed of a sequence of process steps and corresponding buffers. 

Each element of the process chain can flexibly be adapted to the current planning 

case. The machine level reflects a generic behavior of the production machines by 

differentiating between characteristic states and transitions between them. Here, the 

processing time and state-based (empirical) power demands are of special impor-

tance. As a result, the electrical load curve is determined and value-adding and 

non-value-adding energy demands are calculated. At process chain level, the single 

load curves of machines are superposed to the aggregated load curve of the process 

chain. Other relevant performance indicators are also aggregated on process chain 

level, e.g., the cycle time and utilization of process chain elements. The modeling and 

simulation approach is implemented in a three-step solution. The parametrization of 

the model takes place on a standard spreadsheet document. The simulation model 

was developed in AnyLogic 8 Professional and exported as a standalone Java appli-

cation. The results of a simulation experiment are exported to a standard spreadsheet 

document, where they can be further processed and integrated into other planning 

tasks. With this procedure, the simulation model is easily accessible for planners, 

even without modeling and simulation experience. 

Fig. 2.10 Process chain simulation approach (based on Dér et al. 2022)
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2.4.2.3 Results 

As the basis for the simulation, the energy value stream methodology is applied first. 

The goal is to achieve a well-balanced cycle time at all process steps and gain an 

understanding about the bottlenecks and energy hotspots (Fig. 2.11). At most process 

steps in this case, a single machine can achieve the line takt of 60 s. However, a longer 

processing cycle at some process steps (PS), e.g., PS 20, 30, 70, and 80, necessitates 

the parallelization of machines. 

Figure 2.12 shows the calculated energy intensities in descending order. The 

respecting power demands were retrieved from the technology analysis module, 

which contains energy data about multiple already existing crankshaft production 

lines. The top five process steps (approximately 80% of the total product’s energy 

intensity) are external cylindrical grinding (PS 70, 80, and 110), induction heating 

(PS 50) and face grinding (PS 100). 

The simulation experiment in the next planning phase covered three scenarios. 

All scenarios simulated a period of one week in a three-shift system with working

Fig. 2.11 Line balancing within the energy value stream mapping tool 

Fig. 2.12 Energy intensity of the crankshaft production 
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days from Monday to Friday. After defining the scenarios, the simulation model was 

parameterized via a spreadsheet document that was imported during the simulation 

run. Figure 2.13 summarizes the simulated scenarios and the corresponding results. 

Scenario 1 assessed the impact of increasing the processing rate by 5% in the bottle-

neck process (PS 70). This resulted in a shorter processing time at the machine and a 

shorter cycle time at the process step. Therefore, the third machine gets dispensable 

and two machines are sufficient to reach the line takt. The second scenario focused 

on the reduction of non-value adding energy demands in production-free times. To 

this end, the standby energy demand was reduced on the machines with the highest 

standby power demands (PS 70 and 80). Here, best-in-class power demands were 

retrieved from the technology analysis module. Therefore, this scenario also repre-

sents a realistic case. Taking a look at the production volumes, the results demon-

strate that all scenarios are equally feasible from a technical perspective. As expected, 

Scenario 1 stands out with the lowest total energy demand due to the reduced number 

of machines compared to the remaining scenarios. Scenario 2 suggests that energy 

efficiency improvements are also achievable, even without changing the process 

chain structure. The results also indicate that non-value adding energy demands in 

production-free times add up to a significant share of the total energy demand. There-

fore, measures focusing on reducing the base load of machines are effective means 

of increasing the eco-efficiency of the process chain. However, even more important 

is the optimal line balancing, which not only saves energy but also improves the 

technical and economic performance of the process chain. 

Fig. 2.13 Simulation scenarios and results
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2.4.3 Hot Forging 

The third case study is provided by a leading producer and supplier of forged power-

train components and engineering services in the automotive sector. The company 

produces in several production sites high-order quantities of individually engineered 

components by massive forging, averaging at several thousand parts per order. Due to 

the high processing forces, short cycle times and the heating of products in warm and 

hot forging up to 1,100 °C, energy costs are a critical part of overall product costs. The 

manufacturing process consists of raw material separation, blasting, quality checks, 

several forging stages, as well as heating processes. 

2.4.3.1 Process Description and Objectives 

A schematic view of the multi-step process from raw material to finished goods 

can be found in Fig. 2.14. Starting materials are usually bars from raw materials 

such as steel and aluminum. The bars are first cut into coils to portion the amount 

of material needed for the next steps. The transport of the bulk material between 

the machines is carried out manually, the feeding of the machines is conducted 

automatically. The separated billets are processed by either hot, warm, or cold forging 

in two steps. In case of warm and hot forging, the billets need to be heated up 

right before the forging process by an induction unit. Billets are carried through 

the induction unit to set the right forging temperature within the product. After 

placing the part in the forging tool, multi-stage forging is carried out. Depending 

on the product, a second forging operation to set the final geometry, also called 

calibrating, follows the same process scheme. Before and afterwards, heating and 

blasting processes create the specific material properties. This particularly improves 

the compensation of alternating stresses due to continuous fiber orientation compared 

to solely cut components (Klocke and König 2006). The process is supported by 

external processing as well as quality checks. 

The induction units as major consumers are powered with electricity, but also the 

forging itself causes additional high energy consumption. Consequently, peak loads 

as well as overall energy consumption are critical for the final product costs. While the 

energy efficiency can mainly be manipulated with high invest costs, peak loads refer

Fig. 2.14 Processing scheme of the real system 
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heavily to the concept of energy flexibility and subsequently rather organizational 

measures. Hence, the temporal shift of loads to time frames with either lower overall 

system load level or – depending on the company’s energy purchasing scheme— 

lower energy costs are appropriate measures. This can be broken down to several 

planning and control strategies or beneficial energy market interaction. Generally, 

these targets can be validated within material flow simulation in combination with 

energy considerations of product preferences and process flow. Hence, transparency 

in terms of material flow in combination with its energetic profile as well as inter-

dependencies between energy consumption, workload, and processing times need to 

be investigated to realize flexibility potentials. The implications on systems analysis 

and simulation modeling will be presented in the following sections. 

2.4.3.2 Setup of the Simulation Approach 

As stated above, the goal was to model a complex system of forging machines to 

achieve energetic transparency in the first step. Following the VDI 3633, this refers 

to the principle “that a system does not have to be implemented as exactly as possible 

in a model but as exactly as necessary for the specified investigation aims” (Verein  

Deutscher Ingenieure 2014, p. 22). Following this approach, the first step of the 

modeling consisted of an analysis of energy consumers in relation to the total energy 

consumption of the factory system. This analysis revealed that the forging processes 

with the connected induction lines are responsible for about 85% of the electric energy 

consumption within the system, 15% refers to blasting and separation processes as 

well as a base load by heating, ventilation, air conditioning, compressed air, and 

office buildings. Consequently, the simulation itself concentrated on the modeling 

of the forging machines, while the base load was simulated as a black box with 

slightly fluctuating consumption. Additional resources such as battery storages or 

decentralized energy supply were not considered within the model. 

Subsequently, the material flow properties of the relevant system elements were 

analyzed. This included the separation of relevant process steps into their consecutive 

increments as well as the abstraction of the process to discrete events. Figure 2.15 

shows the material flow object to be modeled within the simulation engine. 

The forging process can be separated into an infeed, a separation process, the 

induction conveyor that heats up and transports the parts into the forging process,

Fig. 2.15 Scheme of a material flow object of the multi-step forging process for the simulation 

model 



44 S. Thiede et al.

as well as the forging process itself, which consists of three single steps. Due to the 

parallel machining, this can be assumed as one single process step. The finished parts 

are stored in buffered transport boxes before being passed on to the next step. 

As the next step, system load data, organizational data as well as additional tech-

nical data were clustered and condensed for the observation period of one month. 

System load data included data of order input and product data such as process 

plans and sequences. Organizational data refer to shift models or restrictions within 

work allocation. As already stated, load peaks are a main restriction that need to be 

avoided. Technical data comprise information about factory structure and allocation 

of flow functions to system elements, machine, and corresponding energy data. The 

acquisition of energy data was focused on the main energy consumers, which are the 

induction lines as well as the forging stages themselves (Fig. 2.15). 

The simulation was implemented with Siemens Plant Simulation 16.1. The mate-

rial flow is modeled as a job shop, the machines are not arranged in sequence of the 

working step and there is manual transport between manufacturing steps. The system 

borders are set with the incoming material from the warehouse and the dispatching 

area limits the model to subsequent processes. The material flow consists only of 

forging processes. Due to the highly manual handling and short work plans, the 

material transport between the processes is considered without a transport time. 

Figure 2.16 shows the main network of the model including the generic forging 

process network above the layout. 

Forging processes have a recurrent design, which allows for modeling every 

machine by a generic design and material flow logic. In total, ten forging machines 

are modeled within the simulation with similar designs.

Fig. 2.16 Implemented model in plant simulation (screenshot) 
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As already stated in Fig. 2.4, the simulation of energy flows within the model 

is realized by a discrete event simulation and evaluation within one application 

(paradigm C) for basic investigation. The internal evaluation is realized with the 

eniBRIC module, a generic library for energy and resource consumption analysis, 

which is connected to the production resources in the simulation model. It enables 

the coupling of material flow objects with a module to measure energy consump-

tion (Stoldt et al. 2013), but also to model renewable energy sources and energy 

storages (Stoldt et al. 2017). By focusing on energetic transparency in material 

flow simulation, only the former functionality was applied and will be discussed 

further. The module allows for configuring specific processing states with the corre-

sponding energy consumption for each product and processing station. The eniBRIC 

module was implemented into the main network to simulate the energy source and 

enable energy consumption tracking. Several modules were connected to the forging 

processes to track energy consumption according to their individual processing states. 

Furthermore, order data, energy data, and technical data were stored centrally to 

control the order dispatch and product-based configuration of the stations during 

simulation. Blasting, cleaning, and heating were modeled as black boxes due to the 

minor influence on total energy consumption. 

2.4.3.3 Results 

To prepare the simulation for further investigations in terms of energy flexibility 

measures and energy market interaction, a basic comparison of energetic profiles of 

the real system and simulation was conducted. A period of one month was chosen 

due to the provided detailed energy measurement and manufacturing data for this 

time frame. Both datasets were matched by time stamps to create a load curve for 

production. Time stamps of manufacturing data were also used to dispatch jobs to 

the machines during simulation. The energy data were implemented for each job, 

state, and machine according to the analysis in the last section. Each state change of 

forging machines in the simulation also triggered a change in energy consumption. 

Figure 2.17 shows an extracted view on the comparison between simulation and the 

real system. 

The two series of data show a good overlap in time as well as in the level of load. 

Peaks could be reproduced in satisfactory quality; the processing time and consumed 

energy of machines matches the real system data. A hurdle to better quality of simula-

tion is the missing data of machine breakdowns in the real system. Hence, peaks can 

be reproduced in their level, but—depending on the availability of machines—not at 

a specific time along the entire simulation. This behavior is intensified by variable 

setup times of forging presses, which lead to delayed job processing. To completely 

understand the combination of technical and organizational processing in the system, 

further on-site assessments of the real system need to be conducted. Nevertheless, 

the effect of job combinations on the machines to peak loads was measurable and 

reproducible by simulation.
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Fig. 2.17 Comparison of loads in the real system and the simulation model

To get further insight into the energetic behavior, the load profiles were aggregated 

to compare machines with each other. According to Herrmann et al. (2013), a Pareto 

analysis (Fig. 2.18) as well as an energy portfolio (Fig. 2.19) were depicted to identify 

hot spots for energy measure application. These clusters structure the impact of the 

consumers in which. 

• Cluster I includes critical machines with high load and working time,
• Cluster II includes machines with low working time but high load levels,
• Cluster III includes machines with high working time and moderate load levels, 

and
• Cluster IV includes machines with non-critical attributes. 

This also helps to determine the criticality of the machines according to their load 

levels and working times. One hot-forging machine is close to the critical Cluster

Fig. 2.18 Pareto analysis of energy consumption per year
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Fig. 2.19 Portfolio analysis of working time and average energy consumption

I and or a driver of peak loads. Subsequently, the hot forging machine needs to be 

supported by appropriate energy measures. This makes it inevitable to implement 

further production planning strategies such as a change of the order sequence to avoid 

combinations of jobs with high energy consumption, shifting the start of orders to 

delay the parallel processing of energy-intensive jobs or adjusting processing speeds 

to reduce load levels of the process (Graßl, 2014). Incremental shutdowns of forging 

processes might also be an option to avoid load peaks in the real system. 

Furthermore, static energy purchasing schemes may be replaced by dynamic ones 

through the consideration of energy costs during factory operations. Energy flexi-

bility offers at the day-ahead and intraday market might be another option to reduce 

overall energy costs. By planning the above-mentioned load reductions, an addi-

tional flexibility offer may be placed at the energy markets to generate further value 

from peak load reduction. This is underpinned by the high production flexibility 

within the system due to many manual transport, setup, and maintenance processes 

in combination with short production plans and redundant machines. A further step 

in the model development will be the implementation of algorithms for peak shaving 

by increasing the processing times per part. This increases the overall cycle time, 

but also reduces the energy consumption per part and might be a step towards more 

flexibility in manufacturing control. Also, algorithms for flexible scheduling of jobs 

in order to decrease the parallel processing of energy-intensive jobs will be tested
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and validated in the simulation model. This also requires to set up a database of 

product-specific energy consumptions per machine state and machine. Furthermore, 

a comparison of load levels during daytime and actual day-ahead and intraday energy 

prices can be implemented to identify time slots with cost saving potential. 

2.4.4 Battery Cell Production 

The last case study addresses an industrial-scale research factory where all manufac-

turing steps are available in order to produce automotive-oriented pouch battery cells. 

Batteries play a crucial role, e.g., for the energy transition of mobility. The demand 

for battery cells is estimated to grow significantly in the next decades. While battery 

manufacturing mainly took place in Asia so far, more and more battery factories are 

planned in Europe and North America. Battery manufacturing is characterized by 

the complex interaction of a diversity of processes (Kwade et al. 2018). This ranges 

from continuous and batch processes for the electrode production (e.g., mixing, 

coating and drying, calendaring) to single unit processes for the later cell assembly 

and finishing (Fig. 2.20). Besides the processes as such, technical building services 

(TBS) play an important role in battery factories. The most important aspect in this 

context is the necessary dry room environment for the cell assembly, which is typi-

cally also a main driver for the energy demand (Thomitzek et al. 2019). Details of 

the case study are reported by Schönemann (2017) and Schönemann et al. (2019). 

Fig. 2.20 Battery cell factory—overview of elements (Thiede et al. 2019)
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2.4.4.1 Objectives 

Energy demand of battery manufacturing can actually be seen as a crucial success 

factor. It mainly determines the carbon emissions (Ellingsen et al. 2014) and is also 

relevant from the cost perspective; clearly behind material costs, but in the same order 

of magnitude as labor or depreciation of investment. Therefore, the objective of the 

simulation study is to support the planning of battery factories explicitly including 

energy aspects. 

2.4.4.2 Setup of the Simulation Approach 

Given the heterogeneous setup and the complex interactions in a battery factory, 

a hybrid agent-based simulation model with discrete event and continuous simula-

tion techniques and a simulation architecture with hierarchical coupling of different 

models (related to paradigm B in Fig. 2.5) was developed (Schönemann 2017). 

Figure 2.21 gives a simplified overview of the main components. The core model 

pursues an agent-based approach that was realized in AnyLogic. It depicts the manu-

facturing process chain with all machines, the material flow (product units moving 

through the system), and also workers. 

Fig. 2.21 Multiscale simulation approach with coupling of different simulation tools (adapted from 

Schönemann 2017; Schönemann et al. 2019)
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All those entities incorporate specific models to depict their individual behavior. 

Therewith, also specific machine equipment and different types of processes can be 

considered in the necessary level of detail. Additionally, different production zones 

(e.g., dry room, other air conditioned environment) are distinguished. For the tech-

nical building services, separate models in Matlab Simulink, e.g., for compressed air 

generation and also the building with its different zones, were realized. This enables 

a more-detailed representation of the physics and thermodynamics, e.g., when it 

comes to temperatures in different zones and also energy demand for the related 

HVAC system. All those models are coupled and orchestrated through a middleware 

(TISC). With this overall architecture, complex interdependencies among all entities 

can be well considered. As one example, machine operation or worker presence lead 

to heat loads in the building models and, thus, to higher energy demand for keeping 

the required ambient conditions. External, e.g., seasonal, influences can be consid-

ered, too. Another example is the realistic consideration of compressor operation and 

related energy demand based on machine activities. 

2.4.4.3 Results 

Figures 2.22 and 2.23 show exemplary energy-related results of the presented simu-

lation architecture (Schönemann et al. 2019). Based on the dynamic simulation of 

activities within the battery factory, detailed energy load profiles of all different 

elements can be derived (Fig. 2.22). This gives deep insight into energy-related 

interdependencies and enables the identification of improvement measures as well 

as the analysis of their potential impact. 

Figure 2.23 provides the exemplary breakdown into the main energy drivers of the 

different factory elements. Results underline the very strong relevance of technical 

building services and the coating and drying processes. The simulation environment 

allows for systematically deriving alternative system configurations and operational 

strategies in order to improve the energy-related environmental impacts and costs.

Fig. 2.22 Exemplary load profiles as result of energy simulation of battery manufacturing (adapted 

from Schönemann et al. 2019)
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Fig. 2.23 Exemplary breakdown of energy demand to processes as result of energy simulation of 

battery manufacturing (adapted from Schönemann et al. 2019)

2.5 Conclusions and Outlook 

This chapter has underlined the feasibility and the potentials of energy-oriented simu-

lation approaches for manufacturing systems. The necessary underlying methods 

(e.g., for modeling the energy demand of machines) are well established and a diver-

sity of implementations with different focusses and architectures are available in 

research as well as in commercial solutions. As demonstrated in the case studies, both 

energy efficiency and flexibility aspects can be addressed. Therefore, energy-oriented 

manufacturing system simulation can make a significant contribution towards the 

energy transition of individual companies and the manufacturing industry as a whole. 

There are, of course, still a couple of challenges to be overcome for broader applica-

tion as well as further areas for future research can be identified. Without doubt, the 

continuous acquisition and target-oriented utilization of energy data can be further 

improved. While in general the technical and methodological means are existing, 

many studies are still based on temporally limited measurements, or consistent data 

in the right spatial and temporal resolution are not sufficiently available. The ongoing 

digital transformation of manufacturing industry will certainly further facilitate to 

overcome this barrier. More-advanced and economically feasible sensors and further 

IT hardware as well as more-standardized IT architectures and related interfaces 

(e.g., OPC UA) are available. This facilitates the acquisition, storage, and processing 

of data as well as the combination of different data sources, and eventually lead to 

more beneficial use cases. In this context, also the clearer definition of necessary 

resolutions of energy data inputs for different applications is interesting. The goal is 

a balance of the necessary accuracy for achieving potential improvements with the 

related efforts for data acquisition and processing. The continuous availability of data 

in combination with appropriate models also enables the development of digital twins 

as up-to-date digital representatives of the physical system. Those approaches facili-

tate advanced use cases with a broader scope beyond planning towards continuously 

supporting the operation of manufacturing systems, e.g., through energy-oriented 

control. In this context, also the combination with data-based methods (e.g., based
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on machine learning) is promising, which could be interesting for automated model 

generation as well as advanced assessment of simulation results. 

Regarding the lesson learnt, one underlying challenge in manufacturing is 

certainly that energy-related questions were often perceived as less urgent and bene-

ficial compared to other areas, which lead to a lower prioritization on these issues. 

Given the environmental relevance and the increasing economic dimension of energy 

demand, this needs to change in the future—energy-related aspects should be a 

regular part of manufacturing system improvements, like nowadays time, quality, 

and output-oriented indicators. Besides improving the feasibility of specific energy-

related use cases as pointed out above (increasing the benefits, e.g. through prioritiza-

tion) and focusing on decreasing efforts (e.g., through easier applicability), tapping 

the synergies with other applications is a promising approach to further facilitate 

those developments. Considering energy flows in manufacturing systems should not 

be a side issue that is just considered by specific experts. It needs to be integrated into 

normal routines in both planning and operation, while making use of latest advance-

ment in the ICT domain (cf. Labbus 2021). Modeling and simulation can be an 

important enabler towards deeper understanding of interdependencies, forecasting 

of future scenarios and derivation of meaningful improvement pathways. 
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Chapter 3 

Automotive 

Tim Peter, Kristina Sokoll, Wolfgang Schlüter, and Johannes Dettelbacher 

Abstract The automotive industry is an important branch in many industrialized 

countries in Europe, the USA, Japan, and China. Recent political developments 

provide challenges to achieve carbon–neutral production and to switch from combus-

tion engines to electric engines or other alternative fuels. This is also reflected in 

the development of simulation in production and logistics, where energy-related 

questions became more present in recent years. In this chapter, data from the ASIM 

working group about related literature are analyzed. Topics and architectures already 

being examined in energy simulation in the automotive industry are reviewed. The 

developments are illustrated by two application cases. The first use case shows the 

importance of simulating the power consumption and charging strategies of auto-

mated guided vehicles on the performance of the material flow system. The second 

example shows the possibilities of integrating complex thermodynamic processes 

into the material flow simulation by combining continuous and discrete models. 

The chapter ends with a short conclusion on the state of the art regarding energy 

simulation in the automotive sector.
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3.1 Introduction 

The production of cars, trucks, busses, and other motor vehicles can be summarized 

under the term “automotive”. However, the production of a car requires several 

steps and various up- and downstream processes in the value chain, displayed in 

Fig. 3.1. The actual assembly of a car in the Original Equipment Manufacturer 

(OEM) demands upstream processes for the chassis of the vehicle. Some of them 

are especially energy consuming. The following examples show the link between 

production steps and energy key performance indicators: 

Flat steel is shaped and cut into chassis parts in the press shop. Different chassis 

parts are assembled into the car body in the body shop. New developments lead to 

the casting of large body parts (Visnic 2020) that replace the classic press shop parts. 

Furthermore, important structural parts that require exceptional strength in the case 

of an accident are hardened in hot forming processes, where the parts are heated 

before they go to the press shop, leading to additional strength and rigidity. Hot 

forming as well as casting of large body parts are very energy-intensive processes 

(Geckler et al. 2020, p. 305). 

The completed car body is transferred to the paint shop, where set-up times and 

strategies are important topics. They have to be considered in the planning of the 

sequence, while also respecting drying times, which depend on temperature and 

humidity. 

The manufacturing of the chassis is a highly automated process with excessive 

usage of robots for welding and assembly. Simultaneous acceleration of robots leads 

to undesirable short peak loads in energy consumption.

Fig. 3.1 The automotive production process chain 
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After the chassis is manufactured, it is finally moved to the vehicle assembly 

line where components such as engine (internal combustion engine or electric) and 

gearbox are united. Gearbox and engine are often manufactured in another factory, 

either in component factories of the same OEM or bought from external suppliers. 

Before they are assembled, the engine and gearbox components require shafts and 

wheels that are machined, often by milling and turning. The raw parts are cast in 

a foundry and after initial machining hardened by heat in a hardening shop. These 

processes again require significant amounts of energy. 

In conclusion, the automotive production processes are diverse and cover a wide 

range of energy-intensive and highly automated process steps. The most energy-

intensive processes were identified by Geckler et al. (2020, pp. 304–305) as casting, 

heat treatment, hardening, and providing process heat. 

This section has provided an overview about the automotive production process 

and examples of energy-intensive processes in the value chain that are worth simu-

lating. In Sect. 3.2, the special features of the automotive industry when simulating 

energy are presented, based on the results of a detailed literature analysis by the 

ASIM working group (see Sect. 1.1). 

3.2 Simulation of Energy Aspects in the Automotive 

Production 

While the simulation of material flows is common and widespread over most of the 

mentioned processes (cf. Mayer et al. 2020), energy-related-aspects are relatively 

new and still an academic topic. Though, with the increase in energy prices and the 

growing awareness for climate change and the need to decarbonize production, espe-

cially the energy-intensive processes in the value chain offer potential for including 

energy-related aspects into the material flow simulation. 

In order to decarbonize production, an increased use of renewable energies is 

required. Wind and solar energy are heavily dependent on the weather and the time 

of day and year and are not continuously available. This influences the management 

of energy-intensive processes and offers an area of application for energy simulation 

(see Sect. 7.5). 

Geckler et al. (2020) separate these potentials into three categories: balancing of 

energy on a factory or project level, simulation of a factory floor on systems level, 

and detailed simulation of processes and (single) machines. 

The analysis of the ASIM working group shows that most of the case studies for 

energy-related material flow simulation come from the automotive sector (Wenzel 

et al. 2017). One reason for this is the high degree of automation in the automotive 

industry, which makes the processes comparatively easy to model. On the other 

hand, improvements are only possible with great effort. Simulation is a helpful tool 

to leverage the remaining potential.



58 T. Peter et al.

The case studies in the literature contain so many different processes that the 

working group divided them into OEM car manufacturing as well as part and compo-

nent manufacturing. As explained in Sect. 3.1, part and component manufacturing are 

sometimes conducted in-house, sometimes in specialized component factories, and 

sometimes outsourced to a supplier. In the following sections, both are considered 

equally and treated together. 

The goal is to provide the reader with information regarding important questions 

and applications of energy-related simulation in the automotive industry. Sources 

for further reading help to get inspiration and ideas for modeling and simulation. 

Furthermore, subjects are identified that are still not very well researched and lack 

applications. 

3.3 Findings of the ASIM Working Group 

The ASIM working group (see Sect. 1.1) has gathered relevant scientific research 

and case studies for energy simulation in material flow systems and classified them 

into a database of eleven different categories which are discussed and classified into 

a morphological box in Chap. 1 of this book. The following analysis uses the update 

of the database from April 2021. 

One of the categories in which the work has been classified is the “industry” in 

which the consideration of energy has taken place in the simulation. In the following, 

the publications related to the automotive industry are analyzed in detail. In total, 51 

sources were identified for the automotive sector (24% out of a total of 213), which 

is by far the largest group among all industries. The aim is to show the focus of 

simulation studies for automotive use cases and discover fields that lack application 

and research examples. 

3.3.1 Scope and Objectives 

In the analysis of the ASIM working group, the publications of authors and author 

teams have been categorized into eleven groups regarding the scopes and objectives 

of the work. Figure 3.2 shows the distribution of the publications for automotive 

industry regarding the scope of the scientific work. Some authors pursue multiple 

objectives, so that the total amount of scopes in the figure exceeds 51.

While there is a wide variety of scopes and objectives pursued, there is a clear 

priority for.

• Choosing and sizing of energy-related infrastructure (e.g., Tur et al. 2019; Beier 

et al. 2016; Kuhlmann and Sauer 2019)
• Local optimization of the energy consumption of single machines and systems 

(e.g., Sinnemann et al. 2020; Alvandi et al. 2015; Wilson et al. 2016)
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Fig. 3.2 Distribution of automotive publications according to objectives

• Energy flexibility and energy-sensitive production planning and control (e.g., 

Dunkelberg et al. 2020) 

which together make up for 56% of all examined publications in the automotive 

industry. Examples for relevant publications were chosen with priority to recent 

works and, if possible, in English language. 

3.3.2 Level of Detail of Energy Simulation in the Automotive 

Sector 

Regarding the level of detail, the ASIM working group has identified five types of 

simulation studies. For the papers in the automotive field, the distribution of these 

types is shown in Fig. 3.3.

• Most publications deal with simulation on a production line or a production 

process level (e.g., Stange and Bös 2019).
• Six works concentrate on single components or energy consumers (e.g., Sinne-

mann et al. 2020; Wenzel et al. 2015; Brüggemann et al. 2014).
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Fig. 3.3 Concentration of papers for the different levels of detail

• Another four works concentrate on simulation on production or manufacturing 

area level (e.g., Thomitzek et al. 2019; Omar et al. 2016; Ichimura and Takakuwa 

2013).
• The only publication describing a use case for production and logistic networks 

is Lee et al. (2012).
• For the factory level, no publications were identified. Unlike production and manu-

facturing, the factory level looks at the whole plant, not just a manufacturing or 

assembly area. 

3.3.3 Architecture Used in Energy Simulation 

in the Automotive Sector 

Poeting et al. (2019) displayed four different approaches on how energy can be 

included in a simulation model. The ASIM workgroup defined further categories for 

the consideration of energy in the simulation studies (see Sect. 1.2.2). 

In the automotive field, by far the most common method is the integration of 

the energy consideration into the DES simulation tool (e.g.,Sivapragasam 2016; 

Thiemicke 2016) as shown in Fig. 3.4. It is not only the easiest method to implement, 

but DES simulation tools are very common in the automotive sector (e.g., Tecno-

matix Plant Simulation) and there is significant standardization available (Automo-

tive Library, cf. Sokoll et al. 2021). Both, Plant Simulation and the Automotive 

Library, contain elements and methods for the simulation of energy consumption of 

production equipment and transport vehicles.

• Three papers used a discrete event simulation with evaluation after the end of the 

simulation run (Chu et al. 2016; Wilson et al. 2016; Neugebauer et al. 2012).
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Fig. 3.4 Works regarding the architecture of the simulation models

• Another three ones coupled a discrete event model online with a continuous model 

(Geckler et al. 2020; Omar et al. 2016; Wenzel et al. 2015).
• One publication each was identified for hardware in the loop (Sinnemann 

et al. 2020), continuous simulation (Brüggemann et al. 2014), and combining 

continuous and discrete models in one tool (Thomitzek et al. 2019). 

In conclusion, most of the simulation studies in the automotive industry deal with 

production topics, whereas logistics and transportation are neglected. This seems 

logical as according to Geckler et al. (2020), 93% of the CO2 emissions are caused 

by different production processes and only 7% by “supporting processes” that also 

include logistics. 

3.4 Applications 

This will be illustrated by two use cases from fields that are not yet widely covered by 

simulation. In Sect. 3.4.1, a use case from intralogistics is described. The following 

use case (Sect. 3.4.2) explains the combined use of discrete event and continuous 

simulation in one tool, which is an architecture where not many papers were found. 

Being relatively complex with respect to the modeling task, it is most suited for 

processes that are described by differential equations, e.g., thermal processes like
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casting or heat treatment. As these processes are the most energy-consuming, it is 

worth to analyze them in detail. 

3.4.1 Automated Guided Vehicles in Automotive Intralogistics 

Automated guided vehicles, hereinafter referred to as AGVs, are increasingly 

becoming a standard technology in automotive intralogistics. Vehicles as well as 

necessary material loading and charging infrastructures are becoming more and more 

performant, reliable, and financially rewarding. Many different configurations for 

both give the opportunity to put together a specific compatible transport system for 

each production process. 

Therefore, the configuration of logistics systems, varying all those possible char-

acteristics of vehicles, infrastructure, and steering is in the focus of simulation studies 

to determine an optimal solution. Especially energy-related parameters of vehicle 

batteries as well as possible energy management strategies (e.g., using stationary or 

inductive charging) can have a significant influence on the results. 

3.4.1.1 Scope of Material Flow Simulation in the Field of Logistics 

The overall objective of simulation in the field of transport logistics is to obtain a 

reliable supply of a production system with a minimum of required resources, such 

as storage area, transport units, or vehicles. Due to the broad range of attributes 

describing the logistic process and being variable in simulation experiments, it is 

possible to reach a predefined target state by many different configurations. The 

optimization is usually an iterative and non-automated procedure, involving the 

experience of both simulation and logistics engineers. 

The energy of interest in intralogistics is usually the one of battery-electric trans-

port vehicles as a limited resource of the logistic system. Typically, the simulation 

model is used to find an optimum for the necessary resources, which are not only the 

required number of AGVs. Related process components, such as material loading 

and charging stations, have a significant influence on the simulation results. Their 

number as well as energy-related characteristics and control (e.g., charging amount 

and logic) determine the main outcome of the simulation study. 

The application described here is a simplified use case derived from an early phase 

of a planning project, describing a supply for an assembly based on automated guided 

transport vehicles, in order to explain the effects of energy-related attributes on an 

intralogistics system. Different charging configurations and resources are compared 

in the simulation experiments. A schematic representation of the examined and 

typically structured body shop is shown in Fig. 3.5.

For the simulation study, only the storage area for produced components within 

the body shop, such as doors and lids, and the mounting of those components on 

the car body at an assembly is of interest. The previous value chain from start of
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Fig. 3.5 Schematic 

representation of production 

and AGV transport of 

components

production until start of assembly can be modeled in an abstract manner. At the end 

of the assembly lines, the finished body-in-white is leaving the body shop towards 

the paint shop. 

3.4.1.2 Modeling of Battery-Electric Vehicles 

It is observable in recent simulation projects that the higher the degree of automation, 

the higher is the level of detail of the modeled vehicles. The modeling of conventional 

vehicles, e.g., manually guided ones such as tuggers or forklifts, include a human 

factor. Therefore, higher uncertainty and the possible error of the simulation model 

are accepted and taken into account. In case of automated transports, both vehicles 

and steering can be described and computed more accurately without additional 

range of fluctuation caused by a human factor, especially if the transport system is 

operating within a closed area. 

The growing level of detail does not only concern energy, but also other attributes. 

For manually operated vehicles, such as conventional forklifts or tuggers, the modeled 

characteristics often include:

• Average driving speed (if necessary, differentiation by normal and slow, e.g., for 

passing crossroads)
• Loading capacity for transport units and limits (if necessary, both weight and 

dimension)
• Time needed for handling of transport units (if necessary, differentiation by type 

of handling, e.g., load or unload) 

The technical availability of non-automated vehicles is usually high and may, thus, 

be neglected. But, for some use cases or kinds of vehicles it might be reasonable 

to schedule at least fixed maintenance intervals. In addition, it is common practice 

to simplify energy parameters and controls to a necessary minimum: The battery is 

assumed to be always sufficiently charged and the energy consumption of the vehi-

cles’ actions is not considered. As those kinds of vehicles often have changeable 

battery systems, lasting for the length of a production shift of eight hours or more, 

the only relevant influence on the transport disposition is the frequency and time for 

replacing the currently installed battery with a fully charged one. This is often sched-

uled at the beginning of each production shift for a maximum number of vehicles
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at once. For that period less vehicles are available for transportation. Therefore, it is 

essential to take this kind of organizational unavailability into account. 

As the level of automation has been increasing continuously in production as well 

as logistics, additional aspects must be considered. Although AGVs are a proven 

transport concept, the technical access and costs for purchase and operation have 

been decreasing, which contributes to their spread in transport logistics. As even 

handling and charging tasks are more and more fully automated and often affiliated 

with each other, comparing and evaluating the effects of different strategies for those 

tasks is usually one of the most important tasks supported by a simulation study. 

This requires a more detailed description of the transport vehicles and their energy 

attributes, as they can have a significant influence on the results. An overview of 

relevant parameters is given in Table 3.1. 

Table 3.1 Common parameters for describing the relevant features of battery-electric vehicles in 

simulation models (* unit can differ, e.g., depending on simulation software) 

Parameter Unit* Description 

Driving and handling Driving speed empty m/s Driving without any load 

Driving speed loaded m/s Driving with loaded or hitched 

transport unit 

Driving speed curve m/s Reduced speed at intersections 

Driving speed slow m/s Reduced speed, e.g., for 

approaching station 

Acceleration/deceleration m/s2 E.g., general for all kinds of 

driving 

Rotation speed °/s Speed for turning on the spot 

Positioning time s Vernier adjustment 

Loading time s Load transport unit, e.g., by 

lifting or hitching 

Unloading time s Unload transport unit, e.g., by 

putting down or unhitching 

Battery Capacity Ah Overall capacity per vehicle 

Reserve Ah Minimum capacity, e.g., for 

triggering charging controls 

Charge current A Charge current used recharging 

battery 

Consumption idle A Basic consumption in idle state 

(not driving/loading/ 

charging…) 

Consumption driving A Driving without any transport 

unit 

Consumption driving empties A Moving transport unit with 

empties 

Consumption driving material A Moving transport unit with 

material
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In what manner those parameters are modeled and computed throughout the simu-

lation depends on the used software and modeling approach. There are use cases 

where not all listed parameters need to be considered or can be assumed identical 

(also if data are not available, especially during an early planning phase). On the 

other hand, it might be necessary to describe driving, handling, and battery attributes 

even more detailed. 

3.4.1.3 Example Logistics Process and Transport Management System 

The modeled production in this use case consists of two parallel assembly lines with 

storage units alongside, where in timed operation steps front and rear doors as well 

as front and rear lids are taken from a mono-material container and mounted to the 

body frame. 

As soon as a container is emptied at the assembly line, two transport demands for 

AGVs are reported to a transport management system:

• Empties: Driving to assembly, lifting the empty container, driving to the storage 

area, and placing it onto a loading station.
• Materials: Driving to the storage area, lifting a material container placed on a 

loading station, driving to assembly, and placing it to its defined location beneath 

the assembly line. 

The transport within the storage area between an abstract container buffer and the 

loading stations is conducted by non-automated forklifts and modeled in a very 

abstract manner, assuming that there is always a forklift available. 

The purpose of the transport management system is to administrate and rate the 

upcoming transport demands and to schedule tours for executing them in a prioritized 

order. The objective is to gain an optimal combination of demands and assigned 

transport vehicles as well as logistic stations, where all transports are finished within 

the available replenishment time. Even in systems with non-automated vehicles this 

is based on a complex decision framework with large sets of rules and variables. 

Often, this needs to relate at least the following information with each other:

• Availability of necessary transport resources, most of all vehicles fulfilling the 

basic needs, e.g., load limits or assignment to predefined transport routes
• Availability of necessary additional transport resources or equipment, e.g., 

different kinds of trailers
• Availability of free loading and unloading positions
• Replenishment time of demand
• Expected tour duration, estimated based on the current vehicle location and 

resulting driving distances as well as handling times 

Some of the parameters listed in Table 3.1—and the computations based on them— 

now have to be taken into account. For each demand, several computations are 

necessary:
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• Required amount of energy based on the expected course, distances, and sections 

of the tour distinguished by different consumption rates (for driving empty and 

driving loaded)
• Remaining battery charge of all available transport vehicles fulfilling the previous 

requirements 

Only one of those vehicles can be assigned, where the charge will not decrease below 

the reserve during the tour. It always has to be possible to use the remaining charge for 

approaching some kind of recharging position. The reserve must be set to a suitable 

value depending on availability and location of those positions. Different recharging 

rules can be, among others:

• Always recharge to a determined battery capacity.
• Only recharge as long as vehicle is idle. If the battery capacity is sufficient for the 

next most urgent demand, the vehicle can be assigned to the tour. 

Depending on possible more complex battery charging strategies, even more aspects 

become part of the decision-making of the transport management system, especially 

if material handling and battery charging can be combined to some extent. Several 

variants can be found here, differing in the required charging equipment and costs 

involved. 

Possible kinds of strategies involving different technical equipment, e.g.,

• Stationary charging at limited charging stations (i.e., only for battery charging, 

while idle vehicles have to approach a free waiting station)
• Stationary charging at limited combined waiting stations with charging function-

ality
• Stationary charging at different kinds of stations such as loading and unloading 

positions with handling actions taking place in parallel
• Inductive charging during driving
• Combination of the above 

If it is possible to recharge during the tour, the amount of gained battery energy can 

be subtracted from the energy demand of the tour. 

3.4.1.4 Modeling Approach Using the “Automotive Library” 

Throughout the planning, it is usually of special interest to switch between the 

different strategies and parameter combinations, and compare the effects. There-

fore, a flexible model design is crucial for an efficient experiment phase. In this 

case, the simulation model is developed with the software Plant Simulation using 

the module “Transport Logistics” of the “Automotive Library”, presented by Sokoll 

et al. (2021). The graphic process modeling leads to a reduction of modeling time 

and high flexibility as well as more intuitive understanding of the transport process 

and the involved decision-making. The resulting process model is shown in Fig. 3.6.
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Fig. 3.6 AGV transport process modeled with the “Automotive Library” (screenshot) 

All objects are a complex containers for both parameters and steering function-

ality. They represent either movement or handling actions, inventory and resources, 

or the overall demand management. They are connected with each other and 

steer upcoming orders by scheduling tours depending on the particularly available 

resources such as AGVs or logistics stations. 

The previously described vehicle attributes and standard idle (driving to waiting 

station) as well as recharging processes (driving to charging station if battery charge 

falls below reserve) are located at one object within the process model called the 

“Vehicle Pool”. In addition, an option for charging while loading or unloading a 

transport unit at the storage area is provided by two “Delay” objects in parallel to 

the according “Take” or “Put” object. This charging option does not necessarily 

have to be modeled in additional objects, but with these details it becomes more 

clear how the process is steered, and whether this option is turned on or off for an 

experiment. Apart from those two objects, the model is a standard AGV system with 

split empties and material tour. The whole process including the added charging 

option is executable with nearly no programming and easily modeled, assuming 

some amount of experience with the “Automotive Library”. 

In addition to the process frame, the simulation model contains a central data 

administration and a layout frame. Figure 3.7 shows the true-to-scale modeled layout 

with a network of roads and intersections, as well as the two assembly lines with 

containers alongside and the storage area with logistics stations for loading and 

unloading, waiting in the idle state, or recharging battery. Those stations are modeled 

in a more abstract way, as each is represented only by one station object with a given
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Fig. 3.7 Layout structure of the use case modeled with the “Automotive Library” (screenshot) 

capacity in terms of stopping places for vehicles. Thus, it is easy to change their 

capacity for different simulation experiments without locating single instances for 

each of the n stations. Especially in an early planning phase, where a preliminary 

estimation of the required number has to be determined while the layout is subject 

to frequent change, this clearly reduces the modeling effort. 

The layout structure, as well as assembled parts and process variants are altered, 

simplified and downscaled to some extent. Nevertheless, the arising questions that 

are to be answered with the aid of the simulation model are the same. 

3.4.1.5 Results of Experiments and Evaluation 

As previously mentioned, the number of possible experiments is high due to the 

large number of variables. Therefore, only a small selection is presented. The size 

of the vehicle pool is set to 14 AGVs in the first instance for all experiments and 

the battery reserve to 20% of the battery capacity. The capacity of the loading and 

waiting station are set to unlimited. 

The major varied input parameters for the experiments are:

• The available capacity of the charging station
• The option for parallel charging during handling actions at loading stations
• Optional additional charging time in case of parallel charging 

The gathered output data allowing us to compare the experiments include:

• The allocation of the waiting, loading, and charging station in “number of vehicles 

simultaneously registered” on average and maximum
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• The allocation of the vehicle pool in “number of vehicles simultaneously occupied 

for a tour” on average and maximum
• The number of pending demands on average for showing how much open 

transports need to be assigned
• The tour duration from start driving to finish unloading the transport unit on 

average
• The duration of shortages at assembly lines if occurring during the simulation on 

average (one of the key figures which usually has to be reduced to zero) 

These data are not sufficient for a complete evaluation of the performance and stability 

of the process, but deliver a first impression of the system performance and sensitivity 

to certain process variations. Table 3.2 gives an overview of the chosen input and 

Table 3.3 of the resulting output data. Figures 3.8, 3.9, 3.10, and 3.11 show the 

development of the vehicles’ battery charge percentage from full capacity over the 

time span of one day for each of the four experiments described in Table 3.2. 

Another output for the interpretation of the gained simulation result is the devel-

opment of the vehicle battery charge over time. Figures 3.8, 3.9, 3.10 and 3.11 show 

the state of the batteries in detail as the development of the charge in percentage from 

capacity over the time span of one day. The overall simulation time was set to thirty 

days, but nonetheless, the graphic representation of the first day of simulation time 

can show the effect of different parameter and process variations in a clear way. 

Evaluating Experiment 1 and Experiment 2, where vehicles have to drive to a 

separate charging station with limited capacity, the amount of time for charging 

the vehicle from reserve to capacity blocks too many resources for too much time, 

resulting in shortages at the assembly lines. The vehicles are fully recharged when 

their battery is below reserve which takes up to 30 min. The vehicles lock each other

Table 3.2 Overview of varied input 

Exp1 Exp2 Exp3 Exp4 

Charging capacity 1 2 1 1 

Charging at loading False False True True 

Additional charging time Not relevant Not relevant 0.00 min 0.50 min 

Table 3.3 Overview of compared output 

Exp1 Exp2 Exp3 Exp4 

Waiting allocation 0.36 [max. 14] 0.60 [max. 14] 1.32 [max. 14] 1.35 [max. 14] 

Loading allocation 0.89 [max. 6] 1.42 [max. 6] 1.42 [max. 6] 1.70 [max. 7] 

Charging allocation 0.39 [max. 1] 1.19 [max. 2] 0.17 [max. 1] 0.00 [max. 0] 

Vehicle reservation 13.66 [97.57%] 13.45 [96.04%] 12.78 [91.32%] 12.75 [91.06%] 

Pending demands 44.95 [max. 71] 17.42 [max. 39.2] 13.39 [max. 23] 13.42 [max. 23] 

Tour duration 19.55 min 19.53 min 19.65 min 19.97 min 

Shortage duration 50.5 min 10.88 min 0.00 min 0.00 min
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Fig. 3.8 Development of battery charge in Experiment 1: single charging capacity, no charging on 

load 

Fig. 3.9 Development of battery charge in Experiment 2: double charging capacity

at the charging station and one by another is running out of energy while waiting for 

a free charging slot. Further experiments show that even up to four charging stations 

are not sufficient. The reason is that the recharging time is too long compared to the 

replenishment times of the transport demands. The development of the battery state 

over time in Fig. 3.8 also shows that the reserve is not high enough to cover the delay 

until the charging can be started: It drops to zero for all AGVs during the simulation 

time of one day. 

Doubling the number of charging stations clearly decreases the number of pending 

demands and shortage duration, as vehicles spend less time waiting for a free slot and



3 Automotive 71

Fig. 3.10 Development of battery charge in Experiment 3: charging on load, no additional charging 

time 

Fig. 3.11 Development of battery charge in Experiment 4: charging on load, 30 s additional 

charging time

no AGV breaks down due to an empty battery. Nevertheless, a further optimization 

approach is necessary. 

Therefore, in Experiment 3 and Experiment 4, the option for parallel loading 

and charging is switched on, having a significantly positive effect on the results. No 

shortages occur during the simulation run and vehicles increase the charge in discrete 

steps while finishing the handling of the transport unit at the storage area. 

But, the overall trend of the battery charge in Experiment 3 is still a negative one, 

showing that the gained energy is less than the energy demand for the rest of the tour. 

It happens that after a certain amount of time the battery needs to be fully recharged
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at the separate charging station. Based on that result, experiments were conducted to 

what extent the charging time has to be prolonged at the loading station to balance 

energy recharges and demands. In intermediate steps, the required time has been 

determined and finally set to 0.50 min in Experiment 4. As a result, the development 

of the battery charge over time of all AGVs is stable, but the allocation of the loading 

station increases as it is not limited. Further experiments prove that a limitation 

of the capacity down to two stations, based on the previously determined average 

allocation, would be sufficient. As the allocation of the vehicles by the recharging 

process at the charging station decreases from experiment to experiment, the number 

of AGVs required for a sufficient supply also decreases. 

However, this cannot be the final recommendation and many other parameters 

may have a more significant influence and, thus, be related to the overall set of input 

data. Examples might be different technical availabilities of the charging equipment 

or the available charging power. Assuming that high power stations recharge batteries 

faster, their use would result in a decrease of recharging times, and presumably in 

a lower number of stations required. On the other hand, those kinds of stations are 

associated with higher costs but might also differ in their availability. As an example, 

at the beginning of the project, it was intended to provide each material station at the 

assembly lines with a charging functionality. Later simulation experiments proved 

that fewer charging options per line are sufficient. Assuming investment costs of 

around 2,000 Euro per charging plate that need to be installed at a material station, 

the reduction of costs only for this aspect has reduced the investment by a lower 

six-figure amount in the real system. 

The results in Table 3.2 and Fig. 3.8 are only a small selection from a very 

broad number of experiments, simulated during the overall planning project, which 

included more than twelve variations of process models (compared to Fig. 3.6) and 

more than 100 experiment settings. The interpretation and evaluation of the gained 

simulation results involve many factors that need expertise covering all procedural, 

technical and economic aspects. 

3.4.2 Energy Simulation in an Aluminum Foundry 

In consequence of climate change and energy transition, the importance of energy 

efficiency has increased sharply, especially in Germany. In the automotive industry, 

too, the growing environmental awareness of the population and political require-

ments are highlighting the CO2 balance and the energy efficiency of production and 

products. The potential for energy and cost savings is particularly high in energy-

intensive industries as described in Sect. 3.1, such as the aluminum die casting 

industry, which is a supplier for the automotive sector. In this industry, energy 

consumption per ton of good casting ranges between 2,000 and 6,000 kWh (Belt 

2015; Bosse et al. 2013; Herrmann et al. 2013). According to the German Federal 

Statistical Office, this leads to a high energy cost burden, which can exceed 25% 

of the gross value added (Bundesverband Deutscher Gießereien, 2022). Up to 60%
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of the energy is used for fusing the aluminum mostly in gas-fired melting furnaces. 

Due to the increasing volatility of gas prices, the economic pressure on companies 

is growing. Therefore, the simulation-based analysis of options for more energy-

efficient production operations is of outstanding importance. In aluminum foundries, 

the energy efficiency of the used melting furnaces depends highly on their design, age, 

utilisation, and mode of operation (Belt 2015; Felder et al. 2014; Stephan et al. 2005; 

Salonitis et al. 2016). To study energy-efficient control of the production processes 

in aluminum foundries, simulation-based methods are used (Fuss et al. 2013; Krause 

et al. 2012; Herrmann et al. 2011). The studies show energy efficiency potentials 

for the respective operating components. However, the small plant sizes considered 

in these studies do not allow for developing control strategies for efficient melting 

furnace operation in a larger die casting plant. 

3.4.2.1 Initial Situation and Goals of the Study 

The focus of the study is a foundry that supplies the automotive industry. Forklifts 

are deployed for the transport within the production area. A major goal of the study 

was to determine the impact of downtime of the die casting machines on the total 

productivity. 

The plant structure of the melting area to be represented in the simulation contains 

four melting furnaces with a total melting capacity of 11.3 t/h. The casting area 

consists of 31 casting machines, with eleven casting machines (large parts) having a 

high shot weight of 25 kg and a long cycle time of 120 s. The remaining 20 casting 

machines (small parts) are operated with a smaller shot weight of 5 kg and a shorter 

cycle time of 80 s. 

3.4.2.2 Model Description 

In the first step, the production structure of a typical aluminum die casting plant was 

analyzed and displayed in a diagram (Fig. 3.12). The underlying processes to be 

simulated are:

• Delivery of liquid aluminum (Fig. 3.12a),
• Charging of the gas-fired shaft melting furnaces (MF) via forklifts with ingots 

(metal bars), return or scrap material (Fig. 3.12b)
• Heating, melting, and superheating the aluminum or keeping the metal warm 

(Fig. 3.12c)
• Distribution of the molten aluminum with forklifts to the metering furnaces of the 

die casting machines (Fig. 3.12d)
• Production of castings in the die casting machines (DCM) and quality inspection 

(Fig. 3.12e)
• Transport of material containers from the die casting store or ingot packages from 

the warehouse to the melting store (Fig. 3.12f)
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Fig. 3.12 Plant components and process steps of an aluminum die casting plant

Three forklifts are used to distribute the liquid aluminum to the various die casting 

machines (process step d), and three forklifts supply the melting furnaces with solid 

aluminum (process step f). Due to the large number of identical plant components, 

which have different process parameters, an object-oriented structure of the simu-

lation is necessary. Each plant component from Fig. 3.12 is modeled by a corre-

sponding class. To simplify the simulation of individual operating scenarios, the 

parameterization of the individual objects and the operating data is conducted via a 

table. 

The core of the targeted simulation is the energetic model of the melting furnaces. 

The melting and holding processes (process step c) represent complex thermody-

namic processes that are influenced by many factors. Based on the mathematical 

modeling of the thermodynamic processes in the melting furnace, the energy model 

was implemented as a block diagram. 

The process control module determines the control interventions for the operation 

of the melting furnaces and the forklifts. For this purpose, the plant and process 

parameters of the material and energy flow model are loaded and evaluated. From 

these data, suitable control interventions are derived, which are transferred from the
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process control to the coupled energy and material simulation. The development of 

the process control proved to be very extensive, because different control strategies 

were implemented for reasons of comparison. 

3.4.2.3 Modeling Application Aspects 

The consideration of energy aspects with the desired detailed mapping of the melting 

and holding process in the melting store requires a hybrid simulation. The level 

of detail goes significantly beyond the mere allocation of energy consumption to 

the individual processes. The hybrid simulation of the various processes has been 

implemented by a combination of the MATLAB, Simulink, and Stateflow simulation 

tools The distribution of tasks has been defined as follows:

• MATLAB: simulation control, object instantiation and management, evaluation.
• Simulink: simulation of continuous processes
• Stateflow: simulation of discrete event processes 

The realization of material flow, energy model, and control in a single software envi-

ronment eliminates the need for complex and time-consuming coupling of different 

software packages for the discrete event material flow model and the continuous 

energy model. 

The complete simulation model, consisting of the submodels energy flow, material 

flow, and process control, is shown in Fig. 3.13. The energy flow model is used 

to calculate the thermodynamic processes of the aluminum melting furnaces. The 

material flow model serves for recording the complete material flow within the plant. 

There is a bidirectional coupling between the material flow model and the energy flow 

model: on the one hand, the energy model is provided with information on the input 

and output of solid or liquid aluminum (Fig. 3.13a). On the other hand, the energy 

model transfers the most important furnace data to the material flow model, such as 

the current melting rate or the amount of available liquid aluminum (Fig. 3.13b).

In the process control (Fig. 3.13c), different control strategies can be implemented 

and compared with respect to their effects on production and energy consumption. 

In the simulation, the production orders for the die casting machines are assigned 

in addition to switching on and off (simulation of downtimes) the components. The 

operation-dependent order data determination compiles possible orders “just in time” 

and identifies the optimal order. The control system is used to manage the storage 

of the solid aluminum and the charging of the melting furnaces with solid material. 

Essentially, the time, mass, and material type of the charge are specified. The control 

system is, thus, decisive for the correct filling level of the solid aluminum in the 

melting shaft. Therefore, the simulation model can investigate and analyze the effects 

of different forklift control concepts on the melting furnaces. 

A reliable supply of aluminum to the die casting machines is crucial for production 

operations. Therefore, the control of the forklifts of the DCM production for the 

distribution of liquid aluminum from the melting furnaces via impeller station to 

the die casting machines is of prime importance. The control algorithm determines



76 T. Peter et al.

Furnace fork lifts 

DCM fork lifts 

Melting furnaces 

Process control data 

(e.g. forklift commands) 

Process control 

Equipment data 

Process parameters 

Production plan 

Material flow 

model 

Energy 

model 

Coupled simulation 

b a  

c 

Fig. 3.13 Structure of the simulation model

the material source (melting furnace), the material sinks to be filled (die casting 

machines) and the resulting withdrawal quantity. The die casting machines to be 

filled can be selected based on various criteria. In industry, the selection is usually 

based on a traffic light system with a defined signal color (red—yellow—green) for a 

specific filling level range. This selection mechanism can be improved by recording 

and comparing the exact machine fill levels. Another alternative is a distribution 

based on the remaining runtimes of the die casting machines. In this case, for each 

metering furnace the remaining runtime until a shutdown due to material shortage 

must be calculated, according to the current filling level, the given cycle time, and the 

product-dependent shot weight. The metering furnace that has the shortest remaining 

runtime is filled first. This is the optimal strategy. 

The basic physical model of the melting furnaces is based on a dynamic system 

of differential equations. Starting from a combustion calculation, it computes the 

heat transfer from the flue gas to the aluminum and simulate the melting and holding 

process in the melting furnace. The material and energy flow in the furnace is bidi-

rectionally coupled in the simulation model (Fig. 3.14). The model includes the 

changing of the solid aluminum surface as well as the heat loss via the furnace wall. 

Both factors influence the heat transfer from flue gas to aluminum.

For each component from Fig. 3.12 (melting furnace, die casting machine, fork-

lift, etc.), a state chart was defined in Stateflow. In the state charts, the different 

states of the components are connected by event-driven state transitions. To enable 

communication between the individual systems, an interface between the Simulink 

and Stateflow models was required. This has been realized by “Interpreted MATLAB 

Functions” (Fig. 3.15.). The IN function passes on the necessary system parameters 

and events to the corresponding components. In each time step, the OUT function
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Fig. 3.14 Schematic representation of the melting furnace model

Fig. 3.15 Interface between 

MATLAB, Simulink, and 

Stateflow 

determines the value changes of the system by querying the status of the component. 

Here, the adaptation of the process parameters takes place depending on the status. 

In industrial practice, control strategies that are difficult to describe algorithmi-

cally often occur. With the line-oriented implementation of the sequence control 

in MATLAB, these can be implemented relatively easily. Stochastic influencing 

variables of order determination and execution can be taken into account in the 

programming structure. 

3.4.2.4 Results of Experiments and Evaluation 

To validate the simulation, data acquisition was carried out in a large aluminum 

die casting plant, which has good data availability of process data. In addition to 

determining the feeding strategy and the production schedule, the operating data 

were recorded at all shifts of a complete calendar week. For the material flow model, 

the subsequent simulation revealed deviations in the number of aluminum parts 

produced of 1.4% and the amount of aluminum consumed of 0.9%. These are due
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to unplanned shutdowns of the die casting machines, which can only be statistically 

approximated but not precisely predicted. 

Based on the recorded data, the correctness of the energy model was also 

confirmed. The molten aluminum mass and the gas consumption deviate from the 

actual values by 1.5% and 0.5%, respectively. The accuracy of the thermodynamic 

calculations can be seen not only by the molten aluminum mass (Fig. 3.16), but also 

by the time curve of the flue gas temperature (Fig. 3.17). 

The validation results demonstrate that the simulation model can be used for 

representing real operations accurately. Based on the initial configuration, various 

operating parameters can be varied and the impact on material and energy flow can 

be recorded. These include:

• Preheating of the solid aluminum by adjusting the ingot temperature
• Variation of the forklift control (feeding strategy)
• Variation of the externally delivered liquid aluminum quantity (Fig. 3.12a)

Fig. 3.16 Validation of the energy model based on the molten aluminum mass 

Fig. 3.17 Validation of the energy model based on the gas temperature 
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Fig. 3.18 Impact of downtime on productivity 

• Variation of the liquid aluminum consumption by adjusting the downtimes
• Variation of liquid aluminum production by shutting down individual furnaces 

This allows for evaluating individual efficiency measures according to the relevant 

factors of productivity, energy efficiency, and production reliability. In this context, 

production reliability means the sufficient supply of liquid aluminum to the producing 

die casting machines. The Overall Equipment Effectiveness (OEE) of die casting 

machines is a well-known measure of system efficiency based on the product of 

quality, performance, and availability. In addition to the number of aluminum parts 

produced, the OEE is particularly suitable as an evaluation figure for the productivity 

of the operation. 

In the measurements of the reference operation examined, downtimes (planned 

and unplanned) of the die casting machines amount to 30% of the total running time. 

In this configuration, the achievable productivity of the operation is only limited 

by the die casting machines. Therefore, there is a surplus of liquid aluminum. By 

reducing downtime (e.g., by implementing an improved maintenance concept), the 

productivity of the overall operation can be significantly increased. The effects of 

reduced downtimes on productivity are given in Fig. 3.18. 

The OEE can be increased from 64 to 79% because of a downtime reduction to 

15% of the total running time. A further reduction of the downtimes to 3% again 

results in a noticeable increase of the key figure to 85%, whereby a weakening of the 

effect is noticeable due to the onset of the liquid aluminum shortage. 

Figure 3.18 also shows that the aluminum mass produced by the melting furnaces 

increases in direct proportion to the availability of die casting machines. As a side 

effect of the increase in productivity, there is an increase in the utilization of the 

melting furnaces. For high productivity values (downtimes 3%), however, the liquid 

aluminum consumption can exceed the capacity of the melting furnaces. In addition 

to the planned and unplanned downtimes considered so far, die casting machine 

failures can also occur due to a lack of aluminum. 

To investigate these efficiency measures, one smelter (out of four in the refer-

ence operation) is switched off within the simulation. The resulting specific energy 

consumption of the remaining furnaces is compared with the values occurring in 

real operation (Fig. 3.19). In a further simulation run, the liquid aluminum supply is
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Fig. 3.19 Specific energy consumption for various savings measures with downtimes of 30% 

significantly reduced (10% of the original value). With downtimes of 30%, no oper-

ational failures occur due to aluminum shortages, so production reliability remains 

guaranteed. 

With the help of the measures described, a reduction in specific energy consump-

tion of 10% (reduced liquid aluminum delivery) or 12% (furnace shutdown) can 

be realized. Unlike the preheating of solid aluminum, however, the reduction of 

the production capacity for liquid aluminum is not associated with an increase in 

production reliability, but even represents a risk. Therefore, corresponding measures 

should only be implemented after detailed preparation. By simulation, it is possible 

to determine improvement potentials without endangering real operations. 

3.4.2.5 Benefits and Lessons Learned 

Programming in the MATLAB/Simulink/Stateflow software package is very complex 

compared to the use of simulation software for discrete event simulation (such as 

Plant Simulation) in combination with a dynamic simulation of the thermodynamic 

processes. However, it offers the opportunity of an ongoing bidirectional coupling 

of the material and energy flow. An object-oriented approach is necessary to master 

the software complexity. In addition, excellent knowledge of the interaction of the 

MATLAB programming language with the block-oriented simulation environment 

Simulink and the event-oriented simulation environment Stateflow is required. 

In order to achieve a comparable range of functions with special software for the 

simulation of production systems, the chosen approach has the following advantages:

• Detailed investigation of specific process parameters
• Simple bidirectional coupling of discrete event and continuous dynamic processes
• Simple implementation of complex control algorithms 

However, this is countered by:

• The considerable time required to implement the simulation
• The necessary know-how for a very specific development environment
• No real time animation of the simulation
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The parameterization of the individual components in several linked tables enables 

machine parameters to be changed easily, which made it possible to simulate further 

aluminum die casting operations. The simulation was successfully validated a second 

time through the operating data of a medium-sized die casting operation. With 

the dynamic setup of the plant structure in Simulink before each simulation run, 

any aluminum die casting plant whose operational structure corresponds to that in 

Fig. 3.10 can be simulated. The results of energy efficiency measures in aluminum 

die casting plants of different sizes can be displayed in an app (Hochschule Ansbach 

2022). Gas savings, system efficiency, and the production balance are computed 

for selected company sizes and specific measures. The combination of efficiency 

measures shows a specific energy saving in kWh/tAl. of up to 24.6%. 

In real operation, the simulated effects of the energy efficiency measures can 

only be partially achieved due to established operational processes or thermal losses. 

However, the results can be used to weigh up the order of magnitude of the energy 

savings achieved by the individual measures. For example, it can be deduced that 

a logistical measure in form of optimized charging processes compared to a cost-

intensive preheating chamber for preheating the solid aluminum offers improvements 

in productivity, production reliability, and energy efficiency. The simulation also 

depicts that the above-mentioned measures can only realize their full potential in 

combination with significant reductions in plant downtimes or with the installation 

of additional die casting machines. 

3.5 Conclusions and Outlook 

The method of simulation is already widespread in the automotive industry. Although 

energy-related simulation is not comparably common, the pioneering role of the 

automotive industry is also evident here as most of the identified research publications 

describe use cases from the automotive industry. The diversity and complexity of 

this topic is reflected in the many different approaches and modeling techniques. 

While simulation is now widespread in production and logistics due to the increased 

complexity of the processes, energy-related simulation has yet to establish itself in 

practice. This can only succeed if economic, ecological, and political advantages can 

be achieved through the simulation. In order to reduce the effort involved in modeling 

and simulation, further standardization is necessary. 
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Chapter 4 

Transportation 

Marvin Auf der Landwehr , Javier Faulin , 

and Adrian Serrano-Hernandez 

Abstract With the evolution of emerging technologies, transportation systems are 

becoming increasingly complex. At the same time, the advent of grand environ-

mental challenges, such as climate change, requires researchers and practitioners 

to develop new transportation strategies that ensure a high degree of energy effi-

ciency. Due to their immanent capabilities to study the behavior of complex systems 

over time, simulation methodologies can provide valuable assets to determine the 

energy efficiency on a transportation system. Thus, this chapter reviews the current 

state of the art regarding energy-related simulation research in the transportation 

sector. It outlines the status quo of energy-related simulation research and provides 

an overview on the most common simulation methods used for analyzing energy-

related transportation aspects such as vehicle emissions. Moreover, to demonstrate 

the practical applicability of simulation in this domain, two exemplary use cases 

are elaborated, employing an agent-based modeling technique to assess emission 

implications resulting from different freight and grocery transportation strategies. 

The results of the use cases show that simulation can be a powerful methodology to 

evaluate energy-related transportation effects, ultimately supporting more informed 

theory construction and strategy formulation incentives. 

4.1 Introduction 

With the rising importance of human capital, technology and process efficiency for 

industrial competitiveness, and the growing demands on prices and product quality, 

companies across the globe are forced to continuously reconfigure their product port-

folio, their operating methods, their market approaches, as well as their processes
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for collecting materials and distributing products. To this respect, freight transporta-

tion is a key determinant in business, as it allows for transferring goods from places 

where they are produced to places where they are required. Thus, transportation is a 

fundamental service that is indispensable for supply chains linking the organization 

to suppliers and to customers. 

At the same time, transport is a major source of environmental pollution and 

contributes to climate change, air pollution, and noise emissions, among other exter-

nalities (Demir et al. 2015). According to the European Environment Agency (2021a), 

transportation consumes a third of all energy sources in the European Union (EU). 

Most of this energy derives from oil, although renewable energies are gaining a more 

important role in energy production (Faulin et al. 2006). Transportation is respon-

sible for about 26% of the EU’s carbon dioxide (CO2) emissions and contributes 

significantly to climate change (European Environment Agency 2021b). While most 

of the other economic sectors, for example, industry and energy production, have 

reduced their emissions since the 1990ies, emissions from transport have increased. 

Currently, these represent more than a quarter of the total greenhouse gas emissions 

in the EU (European Environment Agency 2021a). 

Transportation systems are known to be complex. They are usually characterized 

by a large number of elements (e.g., all actors in a supply chain model) and by highly 

uncertain interrelations among them. Additionally, this complexity is not an inherent 

property of the behavior of the system itself, but rather a result of lacking method-

ologies and tools that could enable the development of a model that is capable of 

reliably mimicking the system under study. The paradigm of last mile distribution is 

a good example for the complexity of transportation systems (Janjevic and Winken-

bach 2020; Melkonyan et al. 2020). Broadly speaking, there are multiple conflicting 

objectives among different stakeholders in key delivery activities in city centers that 

lead to both, opportunities and challenges for sustainable cities. 

In particular, three problems arise from last-mile distribution (Olsson et al. 2019; 

Melkoyan et al. 2020; Boysen et al.  2021): 

1. Last mile distribution represents around a third of all transportation costs in an 

extremely competitive and crowded sector, which crushes profitability. 

2. Small trucks and vans are responsible for a significant part of traffic congestion 

in cities. 

3. Transportation is a major source of air pollution, especially in cities. Apart from 

CO2 emissions, air pollutants, such as nitrogen dioxide (NO2) and particulate 

matter (PM), are particularly harmful to human health and the environment. 

Major stakeholders for the two main delivery domains, namely e-commerce and 

hospitality, are consumers, logistics service providers (LSP), and local administra-

tions. 

Potential solutions or enablers may build on infrastructural measures and inter-

organizational cooperation. On the one hand, an appropriate network of automated 

parcel lockers, in-city consolidation centers, the optimization of load and unload 

zones, among other strategies, could improve the freight flows. This would also 

encompass a push towards changing vehicle technologies, i.e., electric vans or cargo
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bikes. On the other hand, horizontal cooperation among LSPs could optimize load 

capacities and reduce the total number of vehicles required for a delivery operation. 

Thereby, cooperation is not limited to companies. Instead, public–private cooperation 

is also a requirement to boost sustainable last mile distributions, even though it would 

require to align regulations from local, regional and national administrations. 

In order to measure, track, evaluate, and optimize the energy-related implica-

tions of complex transportation systems, a dedicated methodology is required that is 

able to holistically capture their behavior, even if it is fairly unknown. This comes 

particularly true, when environmental aspects have to be taken into consideration, 

entailing the inclusion of energy-related variables such as fuel consumption or CO2 

emissions. Simulation can constitute the key for this development. To position simu-

lation as a solution methodology in the transportation domain, this chapter reviews 

simulation methodologies for energy-related transportation aspects and reports on 

two simulation-based case studies for last-mile distribution. Finally, remarks on the 

insights and specifics of this chapter are summarized. 

4.2 Energy-Related Transportation Simulation 

Scientific literature is full of examples employing simulation models to cope with 

complexity in transportation systems with a special focus on energy-related aspects. 

Corlu et al. (2020) provide a general overview of modeling energy in transportation. 

In their literature review, several methodologies are elaborated on, concluding that 

the algorithms that combine metaheuristics with simulation can provide the required 

flexibility for dealing with real-world dynamic scenarios. From an illustrative point 

of view, Fig. 4.1 outlines the number of Scopus-index articles published in the period 

from 1970 to 2020 covering the topic of energy-related simulation in transportation 

(search string: simulation and transportation and (fuel and consumption or energy 

or emissions)). In contrast, Fig. 4.2 exposes the most prominent journals on this 

topic from 2010 to 2020. In brief, there is a remarkable and nearly exponential 

increase from 25 articles in 2005 up to 240 publications published in 2020. These 

articles are mainly published in transportation- and energy-related journals with 

international target audience, including Transportation Research Part D: Transport 

and Environment, International Journal of Hydrogen Energy, and Applied Energy as 

the most prominent scientific platforms.

The work of Crainic et al. (2018) constitutes a starting point. This article reviews 

intermodal freight transportation from the perspective of simulation methodologies. 

Crainic et al. concluded that urban contexts and ecological implications have expe-

rienced a significant growth in research interest, with most analyses focusing on the 

reduction of greenhouse gas emissions as the ultimate goal. Thereby, environmental 

factors are mainly considered by means of generalized costs in urban areas, either 

directly or indirectly. Hence, for example, the reduction in traffic, road occupancy, 

and kilometers traveled are often measured in carbon dioxide equivalent units. Only 

a few publications directly estimate greenhouse gas emissions by measuring CO2 or
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Fig. 4.1 Scopus-index articles of energy-related simulation in transportation since 1970 

Fig. 4.2 Most prominent journals with publications on energy-related transport simulation (2010– 

2020)

nitrogen oxide (NOX) emissions in tons (e.g., Auf der Landwehr et al. 2020). With 

a similar scope, Sayyadi and Awasthi (2018) built a simulation model in order to 

explore determinants for sustainable transportation planning, e.g., fuel consumption 

and greenhouse emissions. In this sense, they have tested several inputs within a 

System Dynamics (SD) framework, resulting in substantiated recommendations to 

decision makers about defining guidelines to reduce urban travel distances and trip 

rates. 

Since 2007, electric vehicles (EVs) have gained an increasing interest (Juan et al. 

2016). Wu and Zhang (2017) elaborate on this issue in great detail. In their article, the 

authors employ simulation to answer the question whether the development of EVs 

can reliably reduce air pollution and greenhouse emissions. The answers depend 

on the market energy mix. Here, simulation plays a critical role in predicting the
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future environmental effects caused by developing a country’s EV industry. Two 

other examples are described in Moghaddam et al. (2017) and Wang et al. (2016). In 

these papers, the problem of identifying the optimal locations for EV charging points 

is addressed. In the former study, a network in Washington City was simulated with 

a population of up to 10,000 EVs, including various influencing parameters (e.g., 

arrival times, locations and number of charging points, energy consumption). In the 

latter research, simulation was used to generate and evaluate multiple public bus 

route networks with different battery sizes for individual buses. 

Furthermore, cooperative strategies are simulated to assess the performance of 

different scenarios. This is further discussed and defined by Serrano-Hernandez et al. 

(2017). They distinguish two meta-approaches: (1) a consumer-centric approach, 

featuring sharing strategies such as carsharing and ridesharing, and (2) a company-

centric solution based on horizontal cooperation. 

Concerning ridesharing and carsharing, even though they are not closely related 

to logistics, they are cooperative passenger transportation strategies that are gaining 

momentum. Tikoudis et al. (2021) and Luna et al. (2020) provide a detailed elab-

oration on the respective effects and consequences in various contexts. In the 

former study, the authors estimate the proliferation effects of ridesharing services 

on transport-related CO2 emissions in nearly 250 cities for the period 2015 to 2050. 

Their simulation models project a reduction of 6% in CO2 emissions with ridesharing 

proliferation, while also outlining major differences depending on the individual city 

characteristics. In the latter study, the authors considered a SD simulation model to 

explain the impacts of electric carsharing on CO2 reductions in the city of Fortaleza 

(Brazil). They concluded that carsharing schemes can play a vital role in reducing 

CO2 emissions and improving urban mobility within the near future. In terms of 

horizontal cooperation, companies share their logistics resources with the purpose 

of obtaining financial and environmental benefits (e.g., by achieving economies of 

scale). Some examples are described in Serrano-Hernandez et al. (2018) as well as  

Fikar and Leithner (2021), where agent-based models are designed to track coalition 

forming and its influence on key performance indicators like driving distances, CO2 

emissions, and service quality. This particular case will also be addressed in the case 

study in Sect. 4.4.2. 

It becomes obvious that simulation in transportation is gaining momentum in 

scientific literature. Commonalities across almost all simulation-based studies are 

the high degree of complexity regarding the underlying system as well as the concep-

tual characteristics and dimensions of the outcomes to be obtained. To this respect, 

energy-related indicators, mainly fuel (or energy) consumption and CO2 emissions, 

are a must-have dimension for the dashboards of transportation managers. Finally, 

there is a rich range of simulation approaches, with agent-based modeling (ABM) 

coupled with Discrete Event Simulation (DES), and SD being the most prominent 

ones. 

“Transportation systems and related policies are complex and cross-sectoral, 

covering different socioeconomic and management aspects” (Harrison et al. 2020, 

p. 239). To ensure a holistic, reliable, and integrated level of assessment and deduce 

feasible, system-specific recommendations, transportation-related problems require
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solution methodologies that offer different perspectives of transport planning while 

at the same time demonstrating the importance of systemic effects such as cause-and-

effect relationships (Bierlaire 2015). Simulation constitutes a powerful and construc-

tive tool to study the behavior of complex real-world transportations systems over 

time and evaluate energy-related system implications. In the context of transportation 

research, the term “simulation” is frequently used in a broad way. Hence, a precise 

definition of simulation technologies is required to distinguish this approach from 

a methodological point of view from other solution techniques such as static calcu-

lations, artificial neural networks, and fuzzy logic. The German Verein Deutscher 

Ingenieure (2014, p. 3) defines simulation as the “representation of a system with its 

dynamic processes in an experimentable model to reach findings which are transfer-

able to reality.” Simulation is characterized by experiments that provide information 

on one possible system or system variant. Therefore, it does not provide any best 

or optimal solution directly, but needs to be controlled manually or automatically to 

guide solution assessment over a series of experiments. Instead, simulation is partic-

ularly appropriate for performing “what-if” analyses on a given system (Rabe and 

Goldsman 2019). 

Simulation methodologies describe the overall process of employing one or 

multiple simulation methods in terms of technology and procedures required to build 

a simulation model (a mathematical formulation that captures a system’s simplified 

representation) and conduct simulation experiments on the system under study (Wins-

berg 2003). As such, a simulation methodology can be interpreted as a contextual 

framework that guides planning and handling of a simulation task or project. The 

choice and application of an appropriate methodology is inevitable to conduct reli-

able, efficient and valid simulation on energy-related questions in the transportation 

sector. In research and practice, various modeling and simulation methods featuring 

distinct benefits and limitations in specific application domains have evolved over 

the last decades (Diallo et al. 2015). With regard to the transportation sector, the most 

commonly employed methods include Monte Carlo Simulation (MCS), DES, and 

SD. While DES models a given business process as series of events with individual 

entities traversing these events, SD focuses on flows around networks rather than on 

the individual behavior of entities, continuously tracks system response according 

to a set of equations, and can mathematically be described as a system of differ-

ential equations (Morgan et al. 2017). Some problems even feature a set-up, where 

events occur at fixed times or where the exact time of occurrence is not relevant. In 

these cases, it may be appropriate to employ a time-slice simulation (TSS), which 

is explained in more detail in Chap. 1 of this book. Unlike dynamic methodologies 

such as DES and SD, static approaches such as MCS do not take into account system 

state changes that dynamically develop over time, but are a mere representation of a 

system’s state at a given point in time. Hence, MCS is used to determine the behavior 

of a system by means of random samples and statistical evaluation (Mooney 1997). 

Moreover, ABM constitutes a popular approach to model a system under study. This 

modeling technique is generally coupled with DES or TSS methods and models a 

system as a network of autonomous agents following a set of predefined rules and 

conditions to draw conclusions from the individual agent behavior and interactions
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with the environment on the behavior of the entire system (Siebers et al. 2010). 

Finally, application specific techniques such as traffic simulation describe a group 

of different simulation approaches that have been specifically developed to solve 

traffic management problems. Thus, traffic simulation is not a simulation method 

per se, but rather a collection of domain-specific solutions. The system state, a set 

of variables that contain information on the evolution of the system over time, can 

both be based on discrete and continuous simulation methods. Depending on time-

advancing-mechanism, system state and solution space, traffic simulation builds on 

various simulation methodologies such as cellular automata (discrete time, discrete 

state, discrete space) or numerical partial differential equation modeling (discrete 

time, continuous state, discrete space) (Barceló 2010). 

4.3 Simulation Methodologies for Energy-Related 

Transportation Aspects 

Table 4.1 provides an overview about the applications of different simulation method-

ologies when it comes to transportation management and planning. It is worthwhile 

to note that the simulation of energy implications in large and detailed transporta-

tion systems requires a considerable amount of computational resources, which can 

represent a limit to the dimension and the level of granularity of the simulation itself. 

However, new computational paradigms, as parallel and cloud computing, currently 

permit to even simulate enormous transportation and energy systems in a detailed 

and realistic manner (Lu and Zeng 2014). 

Due to the fact that energy-related questions in the transportation sector are typi-

cally also characterized by a high degree of complexity, interdependency, and vari-

ability, both time-driven (TSS) and event-driven (DES) simulation approaches are

Table 4.1 Applications of simulation methods in the transportation sector 

Methodology Transportation domain Examples 

DES Urban traffic management 

Concrete transport 

Saltzman (1997) 

Khanh and Kim (2020) 

DES with ABM Railway transport 

Road transport 

City logistics 

Böcker et al. (2001) 

Auf der Landwehr et al. (2020) 

Trott et al. (2021) 

Continuous simulation Traffic control 

City logistics 

Boel and Mihaylova (2006) 

Simoni and Claudel (2018) 

Hybrid (SD&DES) Traffic control 

Road transport 

Tako and Robinson (2012) 

Abzuaziz et al. (2015) 

Hybrid (Others) Urban traffic management Zhang et al. (2014) 

Static methods Airport management 

Travel navigation and routing 

Pitfield et al. (1998) 

Juan et al. (2011) 
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typically not capable to holistically evaluate energy requirements and implications 

across all system levels of traffic control and road-transport problems with large-scale 

networks in isolation. In this case, DES can be coupled with SD in a hybrid simula-

tion to capture different abstraction levels and improve computational performance 

(Brailsford et al. 2014). 

Most energy-related simulation projects in the transportation sector address the 

need to assess or optimize traffic related emission outputs such as carbon monoxide 

(CO), hydrocarbons (HC), CO2, nitrous oxide (N2O), ammonia (NH3), NOX, fine 

particulate matter (PM2.5), and coarse particulate matter (PM10). Other energy aspects 

include performance evaluation of energy sources such as biofuel, electricity, fossil, 

or hybrid systems (e.g., De Fillipo et al. 2014) as well as the consideration of energy 

policies and their impacts on macroeconomic drivers in different nations (e.g., Aslani 

et al. 2014). Since energy-related concerns generally encompass a macroscopic level 

of assessment and continuous system states (e.g., Abzuaziz et al. 2015), in recent 

years, hybrid methodologies have evolved as popular approach to tackle energy 

questions in the transportation sector (Brailsford et al. 2019). 

4.4 Applications 

To demonstrate the applicability of simulation methodologies for assessing energy-

related aspects in the transportation domain, the following section elaborates on two 

exemplary use cases. These cases employ an ABM technique to assess emission 

implications resulting from different freight (Sect. 4.4.1) and grocery (Sect. 4.4.2) 

transportation strategies such as customer self-collection and horizontal collabora-

tion, ultimately identifying conceptual characteristics as well as system designs that 

yield a high emission savings potential. 

4.4.1 Last-Mile Parcel Deliveries in Hanover 

The growing population, the increasing importance of the e-commerce business as 

well as the urbanization are putting a major strain on the infrastructure of cities 

and present logistics in urban areas with unprecedented challenges and require-

ments. Nowadays, parcel deliveries account for a major share of environment- and 

traffic-related issues in metropolitan areas (Van Duin et al. 2016). Courier, express, 

and parcel (CEP) deliveries are directly associated with the growing popularity of 

e-commerce and inherently responsible for the increase in urban road traffic and 

traffic-pertinent pollution (Pronello et al. 2017). Consequently, new ideas, concepts, 

and innovations are required to improve the operational efficiency of last-mile parcel 

deliveries and ensure more sustainable practices across the entire order-fulfillment-

chain. Urban logistics concepts of the future need to be shaped in such a way that they 

compensate for both, the increasing demand for delivery convenience and velocity
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as well as the need to decrease environmental pollution and traffic emissions (Culli-

nane 2009). In this context, multiple last-mile parcel delivery strategies have evolved 

over the past decades, including dedicated parking concepts for carriers (e.g., Trott 

et al. 2021), consumer self-collection services (e.g., Yuen et al. 2018), crowdship-

ping approaches (e.g., Simoni et al. 2020) and collaborative white-label solutions 

(e.g., Pufahl et al. 2020). These concepts consist of a set of operational values for 

storage, transport, and handover routines such as central depots and local micro 

depots, delivery vans and cargos bikes, as well as attended and unattended home 

deliveries, which denote their individual implications (Boysen et al. 2021). 

However, from an energy-related point of view, these implications are subject to 

a wide variety of partially interdependent influencing factors like depot locations, 

fleet compositions, routing procedures (Koç et al. 2016), and vehicle speeds (Demir 

et al. 2014), impeding the possibilities to quantify and analyze traffic emissions 

associated with last-mile parcel delivery concepts elaborately and correctly. In this 

regard, simulation modeling offers a feasible, rigorous and scalable opportunity to 

capture energy-specific ramifications, since it is capable of generating a multitude 

of virtual cases (Russo and Comi 2011), collect a vast amount of data required to 

compare and evaluate cross-parametric dependencies, sensitivities, and effects, and 

allows for studying phenomena in cases where it is intractable to conduct real-life 

studies due to prohibitive costs or conditions (Pidd 2004). Thereby, as an abstraction 

of reality, a simulation model must be constructed in a structured and formalized way 

to ensure that all relevant features and attributes of the real system are carried over 

to the virtual model during the abstraction process (Kotiadis and Robinson 2008). 

Moreover, accurate input data are required to precisely model process characteris-

tics and operational peculiarities such as carrier distribution volumes or distances 

between locations (Balci 2012). Ultimately, the practical implications of the results 

of a simulation study are only as meaningful as the corresponding simulation model 

is an adequate reflection of the real system under investigation. 

Using a case study for the city of Hanover in Germany, the quantification of 

energy-related traffic effects and emissions from different parcel delivery concepts 

is demonstrated. Taking into account the outlined necessity for structured and repre-

sentative model building as well as data accuracy, in the following sections, the 

researched scenarios and the simulation modeling process as well as the model’s 

parameters are outlined in detail. On the basis of these inputs, multiple simulation-

based what-if scenarios are presented to compare the environmental consequences 

of different last-mile distribution strategies for CEP service providers. 

4.4.1.1 Parcel Delivery Concepts 

This simulation study is based on the daily distribution activities of a major LSP in 

Germany. The carrier’s current operations model in the city of Hanover was assessed 

by means of interviews with drivers and managers, datasets on delivery destina-

tions and travel times (e.g., tour schedules), as well as several field studies. As of 

April 2022, the total amount of parcels handled for the four investigated areas of
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Hanover (Mitte, List, Groß-Buchholz, Oststadt) equals 8,600 per day. As conceptu-

ally depicted in Fig. 4.3, different CEP providers (C1–C3) ship parcels from central 

depots to regional depots in close proximity to the target area in Hanover, from 

where these are distributed on the last mile by light delivery vans. This model serves 

as benchmarking scenario for evaluating the implications of four alternative CEP 

distribution schemes in terms of traffic emissions. These alternative schemes encom-

pass collaborative white label deliveries, last-mile distribution activities based on an 

extensive micro hub network, joint order fulfillment from a central city hub, and self 

collection from parcel shops. 

Within the context of the White-Label concept, orders from several CEP service 

providers are bundled and carried out by a joint service in the city center (Fig. 4.4). 

The horizontal cooperation and the bundling of orders in joint regional depots may 

enable CEP providers to achieve greater economies of scale, which, in turn, is likely 

to exert a positive effect on traffic flow and emissions outputs. While regional depots 

are supplied individually by each carrier with heavy duty trucks, light commercial 

vehicle fleets are used jointly in order to utilize individual vehicles more effectively 

and minimize the individual distance driven per vehicle. Similar to traditional delivery 

approaches, the parcels are shipped to a priory specified location (home-delivery) 

and the parcel reception is unattended.

Concerning the city hub concept, a stationary, inner-city transshipment point is 

employed by several CEP LSPs for distribution activities on the last mile (Fig. 4.5). 

Accordingly, the model corresponds to a white label solution with individual, carrier-

specific delivery routines. Customers are supplied by various CEP service providers 

via the stationary hub in the city center. The city hub serves as transshipment point, 

from where CEP service providers distribute parcels on the last mile via cargo bikes 

and light delivery vans. The hub features facilities and equipment required for vehicle 

parking, battery loading, and maintenance. End customers are supplied from the 

stationary hub by attended home deliveries.

The micro hub concept encompasses multiple container-sized hubs across the city 

area, which will be used as final point of fulfillment for distribution activities on the

Fig. 4.3 Traditional parcel delivery concept 
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Fig. 4.4 White label parcel delivery concept

Fig. 4.5 City hub parcel delivery concept

last mile (Fig. 4.6). Parcels are delivered individually by each CEP service provider 

and micro hubs are supplied once a day. The hubs enable last-mile deliveries by cargo 

bikes within a restricted radius of 500 m. Shipping activities exceeding this range 

are performed with delivery vans. The aim of this concept is to reduce emissions 

accruing on the last mile, reduce road traffic, and improve the overall traffic flow by 

reducing second-row parking instances. Since micro hub and cargo bike capacities are 

restricted compared to regional depots, city hubs, and delivery vans, a sophisticated 

hub network is required to ensure full coverage of the city.

The self collection delivery process resembles the traditional delivery concept 

(Fig. 4.7). However, in this case, CEP service providers waive home deliveries and 

provide parcels via a dedicated reception infrastructure. Reception points can include 

parcel shops, public stations (e.g., gas station, train station), as well as locker facil-

ities, and require customers to bridge the last mile themselves. It is assumed that a 

correspondingly high density of storage locations is available, so that customers do 

not necessarily require motorized vehicles to collect a parcel, thus relieving traffic 

and reducing emissions.
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Fig. 4.6 Micro hub parcel delivery concept

Fig. 4.7 Self collection parcel delivery concept 

4.4.1.2 Modeling and Simulation Approach 

The scope of this simulation study is restricted to four representative urban districts 

in the city of Hanover, Germany, featuring a total population of 9,400 inhabitants. 

For each delivery concept, different scenarios regarding infrastructural (e.g., hub 

capacities) and operational (e.g., shipping radii) peculiarities are investigated. Since 

this study focuses on the examination of last-mile distribution and to improve the 

comparability of the different concepts, the simulation model solely covers ship-

ping activities from regional depots to final order recipients, consequently excluding 

supply activities by heavy duty trucks. Concerning the city hub concept, heavy duty 

truck mileages are merely tracked within an area that equals the outer radius of the 

target area and the regional depots of the traditional delivery concept. Trip distances 

are calculated with a bidirectional A* point-to-point algorithm (Nannicini et al. 2012) 

based on an OpenStreetMap network and validated with geographic data for the simu-

lated city districts. To account for the fact that CEP delivery destinations and routes 

change day by day, the individual delivery frequency of a parcel recipient is modeled



4 Transportation 97

as a black box with fixed shares, whereby the individual recipients are stochastically 

altered with each simulation run (Monte Carlo approach). Similarly, several prob-

abilistic system parameters such as vehicle speeds are varied based on stochastic 

distributions and computed as the average over a total of 180,000 simulation runs. 

Depot locations and parcel collection stations have been aligned with the existing 

infrastructure of five major CEP providers in Hanover, while micro hub and city hub 

locations were set based on the objective to minimize the distance to all potential 

recipients. A synopsis on the model input parameters used for this simulation study 

is provided in Table 4.2.

To develop the simulation model, the multimethod software AnyLogic (Version 

8.7.1) was used. The simulation methodology combines ABM properties with a 

discrete event paradigm, whereby the synchronous time-advancing mechanism is 

triggered by sequential behavioral state changes of agents and the resulting interac-

tions in the specified agent networks (DES). Behavioral rules for individual agents 

are modeled by state charts, defining the logical system flows, interdependencies 

and interactions based on the modeled state. This procedure allows for effectively 

modeling and representing the autonomous and heterogeneous behaviors of indi-

vidual system entities (e.g., consumers), while taking into account collective interde-

pendencies, and emerging reciprocations (Gómez-Cruz et al. 2017). The conceptual 

logic of the simulation model builds entirely on ABM and models each entity of the 

system (e.g., delivery van, order recipient) as individual agent or group of agents. 

Each virtual simulation run equals one day and the model scope is limited to a total 

of 10,525 potential recipients that have been distributed randomly across the area of 

investigation. Physical agents (e.g., delivery vans) are placed in a geospatial envi-

ronment, where distance-based navigation and routing procedures are conducted in 

line with a cluster- and time-window-based k-Nearest-Neighbor algorithm (Dudani 

1976). The general shipping process is initiated by recipient-specific parcel orders, 

which are pre-sorted in the responsible depot. Subsequently, tours are created and 

assigned to the respective delivery fleet. Finally, depending on the individual time 

slot of a set of parcels, delivery tours are planned and conducted. If a parcel 

cannot be delivered successfully, it will be returned to the distribution center at 

the end of the tour and delivered the next day. Moreover, the individual capacities of 

different vehicle types were stochastically varied to account for different parcel size 

compositions. 

To calculate the energy distribution in terms of emission outputs, simulated 

distance metrics are tracked for all vehicles. The referenced commercial vehicles 

are a Mercedes Benz 310 cdi/4325 (Delivery van; 70 kW/95 PS; Diesel; Euro 6b; 

2.21 tons tare weight) and a MAN TGS 41.330 with Krone Profi Liner SDP 27 eLB4-

CS (Heavy duty truck; 264 kW/360 PS; Diesel; Euro 6; 15.9 (tractor) + 6.2 (trailer) 

tons tare weight). As outlined in Eq. 4.1, emissions caused by private and commer-

cial traffic (Ei,j) are calculated by the number of vehicles in the investigated area of 

category j and technology k (N j,k), the average annual distance driven per vehicle of 

category j and technology k in kilometers (M j,k), and the technology-specific emis-

sion factor of pollutant i for vehicle category j (EF i,j,k). Vehicle categories include 

passenger cars, light commercial vans, and heavy duty trucks, while technologies
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Table 4.2 Model parameters 

Category Value Unit Type Concept 

Delivery van fleet 42 Vans Fixed All concepts 

Delivery van capacity (mean/SD) 160 (20) Parcels Stochastic All concepts 

Heavy duty truck fleet 20 Trucks Fixed All concepts 

Heavy duty truck capacity 600 Parcels Fixed All concepts 

Shipping volume per day 17,525 Parcels Fixed All concepts 

Vehicle speed inner city (mean/ 

SD) 

25 (5) km/h Stochastic All concepts 

Vehicle speed outer city (mean/ 

SD) 

80 (10) km/h Stochastic All concepts 

City hub capacity 18,000 Parcels Fixed City hub 

Cargo bike speed (mean/SD) 15 (5) km/h Stochastic Micro hub, city 

hub 

Cargo bike capacity (mean/SD) 50 (10) Parcels Stochastic Micro hub, city 

hub 

City hub infrastructure 1 Hubs Fixed City hub 

Delivery success rate (mean/SD) 90 (5) Percentage Stochastic Traditional, white 

label, micro hub, 

city hub 

Share of delivery 

time windows 

12:00–15:00 

15:00–18:00 

08:00–12:00 

40 

30 

30 

Percentage Fixed Traditional, white 

label, city hub, 

micro hub 

Share of cargo bike deliveries 0/25/50 Percentage Variable City hub 

Micro hub capacity 400/800 Parcels Variable Micro hub 

Micro hub infrastructure 472 Hubs Fixed Micro hub 

Regional depot infrastructure 5 Depots Fixed Traditional, white 

label, micro hub, 

self collect 

Share of micro hub deliveries 33/66/100 Percentage Variable Micro hub 

Parcel station capacity 100/200/300 Parcels Variable Self collection 

Reception radius per station 500 Meters Fixed Self collection 

Share of self-collection 

fulfillment 

100 Percentage Fixed Self collection 

Share of car driver collection 20 Percentage Fixed Self collection 

Share of pedestrian collection 40 Percentage Fixed Self collection 

Share of cyclist collection 40 Percentage Fixed Self collection
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range from Euro 1 to Euro 6. Regarding private traffic, the fleet has been specified 

by structural data for the given pilot districts (Landeshauptstadt Hannover 2020). 

NH3, N2O, NOx, and CO are calculated by the given emission factors, whereas CO2 

emissions of vehicles k combusting fuel m are derived by Eq. 4.2, where FCCALC  
k,m is 

the fuel consumption of the vehicles for the respective time period and rH:C as well as 

rO:C the ratios of hydrogen to carbon and oxygen to carbon in the fuel. Input values 

on emission factors, vehicle categories, technologies, and pollutants were compiled 

from the European Environment Agency (Ntziachristos and Samaras 2019). 

EPi, j =
Σ

k 

(N j,k × M j,k × EFi, j,k) (4.1) 

ECALC  
CO2,k,m 

= 44.011 ×
FCCALC  

k,m 

12.011 + 1.008rH :C,m + 16.000rO:C,m 

(4.2) 

4.4.1.3 Results 

The simulation results can be interpreted from two different points of view: (1) 

the accruing traffic volumes in terms of mileages and (2) the associated emission 

outputs. As outlined in Fig. 4.8, total mileages are lowest for the micro hub concept 

and highest for the traditional delivery scenario, which is congruent with existing 

studies for other areas (e.g., Bergmann et al. 2020; Pufahl et al. 2020). Moreover, 

distribution strategies based on self collection and a white label paradigm seem to be 

a viable solution to decrease traffic volumes across the last mile in densely populated 

urban areas. Since the micro hub concept additionally comprises deliveries by means 

of cargo bikes, it is particularly favorable when it comes to reduce traffic volumes and 

road congestion. The city hub concept, which also includes the use of cargo bikes, 

accounts for less mileages driven than traditional deliveries, but performs worse than 

the priory mentioned concepts. Interestingly, the implications for concept-specific 

emission outputs are highly contradictory to the concept-implicated traffic volumes 

in some cases. Table 4.3 provides a synopsis on the individual emissions induced by 

each concept, highlighting the lowest and highest values for each pollutant.

Similar to the case of traffic volumes, the micro hub solution also seems to be 

highly effective when it comes to reducing traffic-related emissions. Furthermore, 

the City-Hub concept features comparably low traffic emissions in terms of CO2, 

N2O, NH3, and CO. In contrast, due to the relatively high share of motorized traffic, 

the white label and self collection approaches feature relatively high degrees of CO2 

and N2O emissions. Self collection even entails the highest emission outputs for 

NH3 and CO pollutants across all concepts, which is mainly due to the differences in 

type of fuel and engine efficiency for private vehicles compared to commercial vans. 

While it is rather unfavorable in terms of CO2 emissions, the white label solution is 

favorable from an ecological viewpoint, implying significantly lower NH3 and CO 

outputs.
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Fig. 4.8 Mileages per delivery concept (for the city hub, micro hub, and  self collection with multiple 

instances in Table 4.4, mileages are shown for the instance with the lowest total amount) 

Table 4.3 Total emissions per delivery concept (for the city hub, micro hub, and  self collection with 

multiple instances in Table 4.4, mileages are shown for the instance with the lowest total amount) 

Total emissions Traditional White label City hub Micro hub Self collection 

CO2 emissions  (in kg) 1839.87 ⇧ 1256.32 921.45 860.50 ⇩ 1294.90 

NH3 emissions (in g) 6.88 2.51 ⇩ 4.79 2.81 9.31 ⇧ 

N2O emissions (in g) 14.97  ⇧ 5.77 0.29 ⇩ 0.49 6.31 

NOx emissions (in kg) 3.52 ⇧ 1.31 1.62 0.05 ⇩ 1.26 

CO emissions (in g) 271.67 99.03 ⇩ 192.79 117.34 303.99 ⇧

Regarding the individual effects of different parameter variations across the city 

hub, micro hub and self collection concepts (each parameter configuration shown 

in Table 4.4 is referred to as individual concept instance), Table 4.4 indicates the 

potential to cut emissions by increasing the share of cargo-bike deliveries to decrease 

emissions from motorized vehicles (City-Hub) and employing a dense network of 

parcel stations with limited capacity (Self-Collection) to cut the share of motorized 

private traffic and raise the likeliness of collection activities by analog means of 

transport.

As for the micro hub concept, Fig. 4.9 illustrates that an extensive storage capacity 

of 800 and 100% hub-based deliveries in the target area are crucial to minimize both 

mileage and CO2 emissions.
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Table 4.4 Total emissions per delivery concept and concept instance 

Main 

concept 

Concept 

instance 

CO₂ (kg) NH₃ (g) N₂O (kg) NOₓ (kg) CO (g) 

City hub Cargo bike 

deliveries: 0 % 
1130.74 ⇧ 6.44 ⇧ 285.12 ⇩ 2.49 ⇧ 257.80 ⇧ 

Cargo bike 

deliveries: 

25 % 

1033.20 5.60 297.83 ⇧ 2.02 224.85 

Cargo bike 

deliveries: 

50 % 

921.45 ⇩ 4.79 ⇩ 292.61 1.62 ⇩ 192.79 ⇩ 

Micro 

hub 

Micro hub 

capacity: 400; 

micro hub 

deliveries: 

33 % 

1143.63 ⇧ 6.69 ⇧ 265.77 2.67 267.22 ⇧ 

Micro hub 

capacity: 400; 

micro hub 

deliveries: 

66 % 

1109.36 5.50 386.91 1.72 222.16 

Micro-Hub 

capacity: 400; 

micro-Hub 

deliveries: 

100 % 

878.45 2.87 501.93 ⇧ 0.05 ⇩ 119.79 

Micro- hub 

capacity: 800; 

micro hub 

deliveries: 

33 % 

1106.20 6.56 244.39 ⇩ 2.66 262.12 

Micro hub 

capacity: 800; 

1098.92 5.47 380.95 1.72 220.74 

micro hub 

deliveries: 

66 % 

Micro hub 

capacity: 800; 

micro hub 

deliveries: 

100 % 

860.50 ⇩ 2.81 ⇩ 491.67 47.52 ⇧ 117.34 ⇩ 

Self 

collection 

Parcel station 

capacity: 100 
1294.90 ⇩ 9.31 ⇩ 6.31 ⇩ 1.26 303.99 ⇩ 

Parcel station 

capacity: 200 

1338.37 16.15 6.94 1.23 ⇩ 510.40 

Parcel station 

capacity: 300 

1404.38 ⇧ 23.15 ⇧ 7.92 ⇧ 1.28 ⇧ 723.48 ⇧
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Fig. 4.9 CO2 emissions (in kg) and mileages (in km) of micro hub concept instance 

4.4.1.4 Discussion of Results 

This use case compares five last-mile delivery concepts for CEP delivery services in 

terms of emission implications. To ensure a comprehensive and contrastable level of 

assessment, an ABS model has been developed with a discrete time-advancing mech-

anism for the city of Hanover (Germany), which is capable of reliably mimicking 

the given transportation system and its traffic ramifications. Based on this simulation 

model, the effects with regard to CO2, NH3, N2O, NOx, and CO pollutants have been 

evaluated for traditional home deliveries and compared them to white label, city 

hub, micro hub and self collection fulfillment concepts. For each concept, different 

scenarios in terms of fulfillment peculiarities (e.g., hub capacities) were tested to 

increase the resilience of the simulation’s outcomes. Finally, the results indicate that 

white label operations seem to be particularly favorable to reduce emissions induced 

by CEP traffic, while micro hub and even self collection approaches lead to increased 

emission outputs compared to traditional CEP deliveries. 

4.4.2 E-grocery in Pamplona with Cooperation Strategies 

During the last decade, consumers’ shopping habits have drastically changed, not 

only because of the massive incorporation of new technologies into our lives, but also 

because of a greater awareness of environmental and social sustainability, growing 

urbanization, and the increasing notion of time pressure. Actually, according to Euro-

stat (2021), 72% of EU citizens have bought or ordered goods or services online 

during 2019—prior to the COVID-19 pandemic—whereas that share was just 62% 

in 2015. In countries such Czech Republic, Romania, and Croatia, these increases 

reached around 20 percentual points in the same period. This is even more intense as
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a consequence of the pandemic, where online shopping surged, and new item cate-

gories gained importance such us food (for cooking at home) or personal care (Accen-

ture 2020). The outcome is a challenging scenario, mainly driven by the increase in 

demand for e-groceries (i.e., the online purchase of groceries, including fresh prod-

ucts) because of an exceptional development of the e-commerce sector. Due to this 

paradigm shift in consumption, companies have adopted proactive sustainable strate-

gies and developed sustainable supply chain management practices to respond to the 

evolving consumer preferences such as automatic parcel locker networks and electric 

vehicles, among others. However, and despite the complexity that is entailed with the 

growing demand, existing literature does not holistically demonstrate the challenges 

of the field, especially those related to logistics and fulfillment processes. Further, 

notwithstanding the promising development of the e-grocery business, the lack of 

interest in developing cost-effective operations is also evident in multiple cases, since 

there are only a few e-grocers that have been able to establish or expand profitable 

operations (Olsson et al. 2019). Thus, the challenges in e-grocery logistics range from 

a wide variety of food-safety-related issues to operational peculiarities like storage 

temperatures, including perishability over time (Fredriksson and Liljestrand 2015). 

In addition, environmentally responsible customer profiles must also be considered 

to assess consumption patterns based on preferences and local demand. Considering 

these consumer requirements, it is more than likely that consumers’ requirements 

differ from the seller’s desires. While consumers usually prefer products from an 

origin in close proximity with long expiry dates, sellers would economically benefit 

from handling routines that prioritize items with shorter shelf lives in order to reduce 

food waste (Fikar 2018). 

In fact, many researchers recognize the strategic importance of sustainability in 

the management of supply chains as a hot topic in scientific literature and it is 

widely accepted that sustainability cannot be achieved by companies in isolation 

(Reyes-Rubiano et al. 2021). Accordingly, integration and involvement are required. 

Reinforcing the same idea, Soosay and Hyland (2015) plead that supply chain 

members operate in more dynamic environments, characterized by globalization, 

rapidly evolving technologies, and increased customer responsiveness. Therefore, 

more integrative and cooperative efforts are required to embrace the full potential 

of the supply chain and its characteristics. Likewise, horizontal cooperation may 

be paramount when opting to meet the requirements of customers and suppliers in 

an efficient and sustainable way, for example, by improving efficiency in logistics 

(Serrano-Hernandez et al. 2017). Therefore, the partnering sellers aim at increasing 

productivity through close cooperation, e.g., by optimizing vehicle capacity utiliza-

tion, reducing empty mileage and cutting costs of auxiliary activities to increase the 

competitiveness of their logistics networks. In this regard, Cruijssen et al. (2007) 

have enumerated the potential benefits of cooperation as follows: (i) reduction of 

costs of transportation; (ii) improvement of service quality by reducing operation 

times and lost goods; (iii) diminution of environmental and social impacts; (iv) miti-

gation of risks; and (v) enhancement of market share. Consequently, extrapolating 

the previous benefits, horizontal cooperation might be particularly interesting for 

e-grocery, where a wide range of customers are widespread in big cities or in rural
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areas, generating long empty backhauls upon completion of the delivery activities. 

Here, the load factors can be improved by means of cooperation (i.e., supermarkets 

share their logistics operations) to reduce empty backhauls. 

Therefore, this case study uses the e-groceries field in a medium-sized Spanish 

city within a cooperative supermarket setting to assess delivery performance in both 

economic and environmental sides. 

4.4.2.1 E-groceries Market in Pamplona City 

The interest in analyzing the e-grocery demand in a medium-sized city like Pamplona 

is two-fold. Firstly, the e-grocery penetration is lower, and customers’ characteristics 

heavily differ from those in large cities, which are better covered by the literature 

(Mkansi et al. 2019). Secondly, the transportation infrastructure is usually poorer than 

in large cities, which makes transportation activities generally less efficient (Alvarez 

et al. 2018) and increases the importance for optimization. Therefore, the geograph-

ical scope of this experiment focuses on the area of Pamplona in Northern Spain, 

which includes a population of about 250,000 inhabitants. Figure 4.10 shows demand 

and supply points of the city, with pink dots representing demand locations and black 

triangles typifying the selected supermarkets for the simulation experiments. 

A survey was conducted in the area with the purpose of gathering e-grocery 

demand information in the month March 2020, which was after the first Spanish

Fig. 4.10 Geographical scope of the case study indicating demand points and supermarkets 
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Table 4.5 Sample 

demographic counts
Age Gender Total 

Men Women 

18–25 23 32 55 

26–35 11 14 25 

36–45 14 22 36 

46–55 29 20 49 

56–65 10 6 16 

>65 0 1 1 

Total 87 95 182 

lockdown. The questionnaire comprised three question blocks: The introductory 

section aimed at collecting socio-economic information such as age, gender, and 

economic status. It is particularly meaningful and interesting as it introduces the 

topic and sets the tone for the remaining study. Therefore, the main objective of 

this section was to clarify general terms and concepts such as e-grocery demand. 

The second section was intended to gather operational e-grocery information. It 

contained questions related to supermarket preference, type of product, frequency 

of online grocery shopping, and the respective expenses. Finally, the third section 

is focused on the logistics part of the e-grocery service. Therefore, the questions 

here referred to the time dimension of the delivery service, namely the preferred 

day of the week for shopping, as well as the preferred time window for the delivery. 

The selection procedure was based on simple random sampling using email. For 

this purpose, different mail distribution lists, e.g., from the Council and the Public 

University of Navarra, were used to reach out to potential participants. All in all, 

182 completed surveys have been collected. Main demographic figures are shown in 

Table 4.5. According to the latest available data on the distribution of the population 

in Pamplona by gender and age groups, the given sample slightly overrepresents the 

young and underrepresents the old but fits well to the gender distribution. Overall, 

the sample seems to be representative for the proposed case study. 

From the analysis of the survey, the main points related to e-grocery demand 

patterns in the city of Pamplona can be drawn. First, there are three main supermarkets 

for ordering online. Thus, these three supermarkets are used for the simulation model 

(Table 4.6). Second, most of the participants usually do not order groceries online. 

However, about 25% of the consumers in the sample order e-groceries at least once a 

month. Third, deliveries are usually preferred on weekdays between 7 and 10 pm. The 

detailed delivery preferences including order frequencies are provided in Table 4.7.

With the previously obtained information, the expected demand, measured as the 

number of orders, can be estimated for the considered supermarkets. These estima-

tions, as shown in Fig. 4.11, constitute the main input parameters for the simulation 

model.
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Table 4.6 Consumers’ 

supermarket preference
Supermarket Preference (%) 

Eroski 17.60 

Mercadona 9.10 

Carrefour 7.50 

Table 4.7 Consumers’ 

e-grocery ordering frequency
E-grocery ordering frequency (%) 

Once a week 4.87 

Once every two weeks 8.70 

Once a month 12.5 

Once every two months 4.18 

Once every three months 4.52 

Never 65.2

Fig. 4.11 Expected order demand per day, time window, and supermarket 

4.4.2.2 Modeling and Simulation Approach 

For analyzing the impact of horizontal cooperation on the urban e-grocery distribution 

in Pamplona, an agent-based model has been developed. As described in forthcoming 

subsections, the general idea behind the simulation model is that customers place 

orders to their preferred supermarket and indicate the preferred time-window for
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accepting a delivery. Afterwards, the stores have to fulfill the orders, depending on 

the run configuration, either by means of cooperative policies or individually. 

A two-dimensional indicator has been applied to evaluate the impact of hori-

zontal cooperation. The first dimension is an economic indicator measured as the 

total distance driven by vehicles. Secondly, an environmental indicator considers the 

resulting CO2 emissions. With this respect, the methodology proposed by EcoTransIT 

(2019) for a small EURO VI truck with a 3,500 kg payload capacity was followed. 

Accordingly, energy consumption in MJ/km was estimated to be 4.7–5.1 for empty 

and full load operations in a standard scenario. Assuming that the vehicles in the 

experiments are fueled with Diesel, which features 43.1 MJ per kg and a density of 

0.85 kg per liter of fuel, this leads to a total of 0.093–0.101 L of diesel consumption 

per kilometer. Moreover, utilizing the average conversion factor of 2.686 kg of CO2 

per liter of diesel, a final range of 0.249–0.270 kg of CO2 emissions per kilometer is 

obtained. 

The simulation model is built based on customer and supermarket agents. 

Customer agents are represented by the cadastral information in the area using a 

geographical information system (GIS). They are represented by the pink dots shown 

in Fig. 4.10, which outlines the location for each building of the 12,000 construc-

tions in the metropolitan area of Pamplona. Knowing the population of the city and 

the size of each household (with an average of 2.5), the authors assume that each 

building lodges eight households. This simplification may result in weaker results for 

suburbs where the buildings account for a lower number of households. Therefore, 

in the simulation model, each demand point is replicated eight times. Parameters 

and variables associated with each of the roughly 96,000 demand points in the simu-

lation model are related to the nature of the buyer, i.e., whether it is an e-grocery 

buyer, and, if so, his or her preferred supermarket, preferred time window and day 

of the week for e-grocery reception, as well as the lead time from the beginning of 

the selected time window and the moment at which the products are handed over to 

the consumer. Additionally, it is assumed that each customer has a service time of 

three minutes, whereby this time is considered as the temporal interval of making 

the physical delivery between the last mile distribution vehicle and the customer’s 

home. For simplification purposes, that service time is fixed and the no-show share 

is set at 0%. 

Supermarket agents typify the top three e-grocery supermarkets in Navarra, the 

Spanish region where Pamplona is located in (Eroski, Mercadona, and Carrefour). 

They are popular supermarket chains in Spain and offer a wide range of online 

groceries, including fresh vegetables and fruits. The locations of these supermarkets 

are highlighted in Fig. 4.10 as black triangles. The parameters and variables associ-

ated with each supermarket comprise the list of customers to serve each day and time 

window, driving distances, and the available fleet. The latter is a critical part in the 

logistics performance of the company. Hence, it is assumed that each supermarket 

owns a homogeneous fleet with a capacity of 20 orders. Likewise, the required size 

of the fleet has been determined with the expected weekly demand per time window, 

which is shown in Fig. 4.11. Considering all orders submitted to the supermarkets 

per day, average values have been obtained of 100.36, 51.89, and 42.77 orders for
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Eroski, Mercadona, and Carrefour supermarkets, respectively. Hence, knowing the 

aforementioned demand values, the fleet size is set as four vehicles for Eroski and 

two vehicles for Mercadona and Carrefour, with the purpose of having a fleet size 

that is correlated with the number of orders in each supermarket. 

If cooperation is not enabled, each supermarket will serve its customers in an 

independent manner. Consequently, each supermarket has to solve as many Vehicle 

Routing Problems (VRP) as time window slots it offers to design the orders distribu-

tion plans. Therefore, we have implemented a heuristic algorithm to solve each VRP, 

which is based on a biased randomization solution procedure of Clarke and Wright’s 

Savings algorithm (Clarke and Wright 1964). A similar implementation considering 

sustainability dimensions and multicriteria analysis can be found in Abdullahi et al. 

(2021). 

In the cooperative settings, all supermarkets serve all customers conjointly. The 

three supermarket chains form a coalition, which sets a delivery problem for the 

demanded orders. This problem must be solved considering several Multi Depot 

Vehicle Routing Problems (MDVRP) according to the time window slots that are 

given. Consequently, a heuristic MDVRP has been implemented following the 

recommendations described by Juan et al. (2015). The solution procedure starts 

by allocating the supermarkets to each customer based on time distances. Then, 

each customer is randomly assigned to a supermarket using a biased randomiza-

tion procedure: closer supermarkets to the customers have greater probabilities to be 

chosen. Once all customers are assigned, the same biased-randomization procedure 

previously described in the VRP is applied to obtain a complete solution. Finally, 

this solution is saved, while a specific proportion of customers (65% in our exper-

iments) remains unassigned and is subsequently reassigned by re-employing the 

biased-randomized assignment procedure. Then, the MDVRPs are solved again. 

This process is repeated 200 times, and the best solution so far is reported. 

The dynamics of the simulation experiments are as follows. All parameters related 

to customer and supermarket agents are determined for each simulation replica-

tion. According to the input data, the customers place their e-grocery orders to their 

preferred supermarket to be served during a specific time window on a given weekday. 

Then, the two cooperation settings are tested. Thus, the simulation model starts on 

Mondays with the non-cooperation strategy. Orders are delivered following a sequen-

tial policy according to time windows. All the supermarkets start their deliveries at 

7 am using the solution reported by the VRP algorithm. This is repeated for the 

rest of the week. Once the non-cooperative scenario is solved, the key performance 

indicators are returned, and the cooperative protocol is evaluated following the proce-

dure previously described. The parameters set at the beginning of the replication are 

maintained for these settings. In total, we ran 100 simulation replications.
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4.4.2.3 Results 

The simulation model and the algorithms were implemented in AnyLogic 8.7.7 and 

run on a standard desktop with an Intel® Core™ i5-7400 CPU @3.00 GHz and 

16 GB RAM. 

First, a significant reduction in both, distances driven and CO2 emissions can be 

observed when horizontal cooperation is employed. In particular, a 39.8% reduction 

in kilometers driven and 40.51% in CO2 emissions can be expected. Table 4.8, based 

on 100 simulation runs, summarizes the main results on a weekly basis for the three 

supermarkets considered. Additionally, Fig. 4.12 outlines the boxplots for distances 

and Fig. 4.13 the CO2 emissions for these simulation runs. 

Additionally, a per-supermarket analysis has been performed. In this sense, 

Table 4.9 shows the impact on mileages and emissions of each supermarket depending 

on the cooperation strategy. This concept is further illustrated in Fig. 4.14. The  

analysis outlines significant differences depending on the size of a supermarket, 

highlighting in particular noteworthy savings for outlets with high demand shares.

Table 4.8 Impact of the 

cooperation in e-grocery 

delivery based on 100 

simulation runs 

Cooperation Distances (km) CO2 (kg) 

No 551.96 146.43 

Yes 332.30 87.12 

% Change −39.80% −40.51% 

Fig. 4.12 Boxplots for distances driven (km) in cooperation and non-cooperation settings based 

on 100 simulation runs
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Fig. 4.13 Boxplots for CO2 emissions (kg) in cooperation and non-cooperation settings based on 

100 simulation runs

Table 4.9 Impact of the cooperation in distances driven (km) and CO2 emissions (kg) per 

supermarket based on 100 simulation runs 

Distances (km) and CO2 (kg) Cooperation % Change 

Yes (km) Yes (CO2) No (km) No (CO2) Km % CO2 % 

Eroski 283.66 77.25 159.37 42.28 −43.82 −45.27 

Mercadona 145.85 38.69 92.66 24.58 −36.47 −36.47 

Carrefour 122.45 30.48 80.17 20.26 −34.53 −33.55 

Total 551.96 146.43 332.20 87.12 −39.81 −40.50

4.4.2.4 Discussion of Results 

This work presents the use of horizontal cooperation to gain competitiveness in the 

e-grocery delivery sector. For testing the convenience of using horizontal cooper-

ation, an agent-based model for the city of Pamplona (Spain) has been developed. 

The evaluation focus was on the effects on economic measures and environmental 

implications of the logistics operations for different scenarios, which are based on 

the distribution of online demand orders for supermarkets. Two degrees of horizontal 

cooperation for performing the deliveries were tested, while distribution plans were 

determined by the implementation of a biased randomization algorithm. As a result, 

the simulation results indicate that the use of horizontal cooperation clearly improves 

the economic and environmental performance of e-grocery distribution activities. 

This would have important considerations for the current supermarket business 

models, even if they are not out of step with the evolution of society as a whole. 

However, the exposed methodology has to be rolled out to other cities and businesses 

in order to generalize the conclusions found.
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Fig. 4.14 Comparison of cooperation and non-cooperation settings for each supermarket in 

distances and CO2 emissions

4.5 Conclusions and Outlook 

This chapter elaborates on the use of computer simulation to study energy-related 

effects in the transportation sector. Freight transportation is a fundamental business 

determinant that typically features multiple contextual and conceptual trade-offs 

as well as interdependencies. To study transportation systems and their immanent 

energy implications, scholars require comprehensive, adaptive, and dynamic method-

ologies that are capable of capturing these relationships in a holistic manner. In 

this respect, computer simulation offers a valuable and distinctive tool for analysis, 

evaluation, and system design. In order to position the simulation methodology as 

an eligible assessment instrument for energy aspects in transportation systems, this 

chapter has first outlined the current status quo of energy-related simulation research, 

proving its growing popularity and usefulness in scientific research. Second, the 

characteristics of prevalent simulation methodologies in transportation science are 

synopsized to provide a reference framework for future simulation-based investiga-

tions in different related industry sectors. To demonstrate the applicability of dynamic 

computer simulation for assessing specific energy aspects in transportations such as 

traffic emissions, two dissenting use cases are outlined. The first case evaluates the 

energy efficiency of different fulfillment strategies in the courier, express, and parcel 

sector based on an operational setup in the city of Hanover (Germany). The second 

case elaborates on the economic and environmental effects of horizontal collabo-

rations in the e-grocery sector, based on the operations of three major retailers in 

the city of Pamplona (Spain). Based on the multi-method software AnyLogic, these 

use cases illustrate both the innate capabilities of the simulation methodology for
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assessing energy-related aspects in the transportation sector as well as the multifari-

ousness as to which simulation methods can be employed within this domain. Other 

tools commonly employed to assess similar transportation-related energy aspects are 

MATSim, PTV Vissim, SUMO and Simio. 

The choice of modeling and simulation approaches as well as the resolution of 

investigated energy data mainly depends on the system and problem domain that is to 

be investigated. Transport-related energy concerns that directly relate to a multiplicity 

of individual behaviors and service-networks (e.g., influence of new public transport 

services on local traffic), can best be researched via an ABM paradigm that is coupled 

with a DES or TSS mechanism. If the investigation is to be conducted over a long 

period of time (e.g., impact of strategic transport policies at urban, regional and 

national levels), encompassing a high degree of time compression, SD can be a 

viable approach to investigate energy-related concerns. Finally, DES and TSS are 

particularly useful for examining the dynamics of transportation-related sub-systems 

that feature (e.g., operations of a single bus terminal). 

Ultimately, recognizing simulation-based research as a powerful, valid, and effec-

tive method to investigate energy-related aspects in the transportation domain does 

not necessarily entail that simulation is always necessary for understanding every 

piece of every transport activity or system. However, it is an important step towards 

acknowledging this methodology as a viable, cross-disciplinary option for efficient 

and effective system design and analysis. 
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Chapter 5 

Retail 

Kai Gutenschwager, Markus Rabe, Michael E. Kuhl, 

and Jorge Luis Chicaiza-Vaca 

Abstract In the last decades, companies in the retail sector have faced growing 
customer demands for convenient delivery of products combining the alternatives 
of traditional in-store shopping and online shopping providing home deliveries 
or pickups at specific pickup locations, along with global aims to reduce energy 
consumption and CO2 emissions worldwide with respect to the global climate change. 
Targets to reduce emissions are supported by a majority of the world’s societies and 
companies. Especially retailers are characterized by very high transportation volumes 
with often very small transportation lot sizes. Here, distribution networks need to 
be designed that allow low energy consumption while still addressing customer 
demands. Simulation has been a core method to analyze such networks and under-
lying processes with respect to costs, but also enables detailed analyses of the energy 
consumption and CO2 emissions of such systems. This chapter gives an overview 
of the scope and objectives for retail distribution systems and present challenges 
for respective simulation models, both addressing Discrete Event Simulation and 
System Dynamics. Furthermore, it presents three application studies and gives an 
outlook to future research and applications.
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5.1 Introduction 

Retail distribution systems are typically characterized by a relatively high energy 
consumption, as customers are to be served with several goods either directly (home 
deliveries) or by a network of stores or simple pickup locations, where customers 
shop or pick up online orders. For both alternatives, often small amounts of loading 
units need to be transported per order or per store. Transports could be carried out 
by a third party provider or an own fleet of vehicles. In this context, not only the size 
and composition of the fleet along with planning of tours is of interest, but also the 
design of the underlying network, consisting of suppliers, warehouses, hubs, stores, 
or pickup locations, as well as possibly the integration of third party logistic providers 
offering different modes of transport. 

The remainder of this chapter is organized as follows: Sect. 5.2 provides an 
overview of the scope and objectives for the simulation of retail distribution systems. 
In Sect. 5.3, the specific challenges for setting up respective models are described 
in detail, also concerning the functionalities that the applied tools need to offer. In 
Sect. 5.4, three case studies are given. The chapter ends with a short conclusion and 
outlook for further developments (Sect. 5.5). 

5.2 Scope and Objectives 

A retail distribution system is a specific distribution system where the final customers 
are part of the respective system. Customers typically go to stores or other pickup 
locations or receive their goods at home. Often, retailers offer several possibilities to 
their customers, differentiating single and multi-channel—or even omni-channel— 
systems. The increase of the share of online sales both as a development in existing 
online channels and by the ongoing market entry of bricks-and-mortar retailers into 
e-commerce leads to non-linear fulfillment processes, as bricks-and-mortar retailing 
is increasingly overlapping with distance retail. Especially due to the COVID-19 
pandemic, customer behavior has further shifted towards online shopping and home 
deliveries. According to data originating from Adobe, the USA have experienced a 
growth of 55% in online purchases, leading to a total of 1.7 Trillion US Dollars in 
the first two pandemic years (Koetsier 2022). Allianz has reported growth rates for 
2020 and 2021 for a number of selected retail chains, where growth rates for online 
purchases often exceeded 100% in 2020, and still where partially in ranges near 100% 
in 2021 (Duthoit 2021). Hübner et al. (2016) give an extensive literature overview for 
retail distribution systems in omni-channel retailing. Here, the forward and backward 
distribution system are differentiated, where the forward distribution system covers 
the material flow from different sources, such as distribution centers, to customers or 
stores as possible points of reception. The backward distribution system deals with 
product returns from the customer to the retailer and possible return centers. This 
leads to complex distribution systems for both forward and backward processes that
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serve customers in stores and simultaneously offer home deliveries, as well as in-
store return of online orders (Hübner et al. 2016). Von Viebahn et al. (2020) present 
a taxonomy for e-grocery fulfillment, differentiating 20 dimensions, including reat-
tempted delivery, the return procedure, and detailed picking and routing dimensions. 
Using a cluster analysis, the authors identify six different archetypes of retailers, 
e.g., “regional champions” with dedicated distribution centers and attended recep-
tion or “collaboration experts” characterized by large delivery areas and collaborative 
fulfillment strategies with hybrid structures. 

Moreover, for analyzing retail systems, customer movements to stores are usually 
not taken into account. Thus, the sinks for respective simulation models are usually 
the stores. However, for comparing the energy consumption of the overall system, 
the movements of customers to stores should also be considered, especially when 
comparing distribution systems where other supply chain designs include a direct 
delivery to the customer. Auf der Landwehr et al. (2021) present such a simula-
tion study that compares six fulfillment strategies in the e-grocery sector. In their 
approach, customers either make single movements for each order, or set up a shop-
ping list, which takes the utilization rate for grocery shopping into account and is 
fulfilled by a trip by car. 

Choosing distribution channels is one of the main design decisions for retailers 
(Beck and Rygl 2015). In case of multi-channel systems, more than one supply chain 
needs to be planned in parallel. Here, different warehouse locations may be used for 
different channels, which increases the complexity respectively. In this context of 
supply chain design, typical planning tasks are (for more general supply chains, cf. 
Gutenschwager and Arnold 2020): 

• the number of stores or pickup locations and their geographical locations, 
• the number of (regional) warehouses, hubs, and possibly return centers and their 

geographical location, 
• the assignment of articles and necessary storage resources (e.g., cooling systems) 

to given locations, 
• the choice of mode of transport (including multi-modal transports) and service 

providers, 
• the sourcing strategies (local sourcing vs. overseas transports or regional prod-

ucts), and 
• the process of transport. 

Typical key figures for supply chain decisions are transport costs, inventory costs, 
warehouse costs including costs for logistic processes, such as handling, repackaging 
or sealing. Most planning approaches for retail distribution systems address mainly 
these cost types. Energy costs may already be covered in these types of costs to some 
degree, and CO2 emission strongly relates to other transport costs, mainly the driven 
distances and the respective fuel consumption, which will be further addressed in 
Sect. 5.4.1. Additionally, service-related key figures, such as different service levels 
towards the customers and response times (from order to delivery) come into play. 
These key figures are also offered by most of the respective simulation systems for 
supply chains (cf. Gutenschwager and Arnold 2020). In Hübner et al. (2016), these
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are also relevant key figures named by chief executives and supply chain experts 
in an empirical study. However, the authors do not include any aspects of energy 
consumption or green supply chains. 

In this context, Susanty et al. (2016) present a general framework for green supply 
chain management practices. Green supply chain management is defined as the inte-
gration of environmental issues, covering all aspects from sourcing to distribution to 
the final customer, including reverse logistics (cp. Srivastava 2007; Sarkis et al. 2011). 
The energy consumption for warehouses, transport, and other processes (picking, 
storage, etc.) should be taken into account in more detail. Especially in the Fast 
Moving Consumer Goods (FMCG) sector—the typical product range for supermar-
kets—, there are typically zones in the warehouse with different temperature levels, 
e.g., for frozen goods, vegetables (near to zero) or dry storage. These sectors have 
different energy consumption levels, which need to be modeled in detail. This aspect 
might also have a strong impact on the overall distribution network design, e.g., by 
keeping frozen goods only at a centralized warehouse. As a general basis for the 
energy consumption, the CO2 emission caused by the distribution system can be 
applied (Rabe et al. 2013). 

5.3 Challenges for the Simulation Models 

Modeling distribution networks is a highly complex task. Different simulation 
approaches can be found in the literature, mainly approaches in the field of System 
Dynamics (SD) and Discrete Event Simulation (DES). While SD is often used for 
rather general analyses, DES models are typically very detailed with models typically 
consisting of a large number of stores, warehouses, product groups, and suppliers. 
In the following two sections, the respective challenges will be discussed for the two 
approaches. 

5.3.1 System Dynamics Models 

System Dynamics (SD) is a methodology for modeling, simulation, analysis, and 
design of the dynamics of socio-economic systems and links qualitative and quan-
titative models. In SD, only a few basic modeling concepts are used: Causal feed-
back loops between system components can be modeled in respective causal loop 
diagrams. Such models are rather qualitative. In order to perform quantitative anal-
yses, stock and flow diagrams can be used, which extend causal loop diagrams. 
Here, a flow leads to a—delayed—change of a stock (variable). These changes are 
typically modeled as equations. Compared to other simulation approaches, usually 
no complex logic models, such as algorithms to determine daily tours for a fleet of 
vehicles, are included. However, in case that the SD modeling environment is not 
capable of using certain algorithms, e.g., the calculation of expected stockouts, also
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an external program could be used to perform the required calculations (cf. Anger-
hofer and Anglidis 2000). Abbas and Bell (1994) conclude that SD is well suited 
for strategic problems and that it could provide a useful tool for supporting policy 
analysis and decision-making in the transport field, which is also highly relevant for 
retail systems. Shepherd (2014) identified several fields of application in the context 
of transportation for SD, reviewing more than 50 papers. Most of the problems 
dealt with in this overview rather have a strategic character and analyze long-term 
developments, like the uptake of alternate fuel vehicles, highway maintenance, and 
strategic policies at urban, regional, and national levels, and strategic supply chain 
management. Georgiadis et al. (2005) present a supply chain model based on SD for a 
fast food chain to investigate long-term capacity planning alternatives, as increasing 
the fleet size rather than leasing transport capacity. Das and Dutta (2013) present a 
simulation model to investigate the significance of various factors including product 
exchange, collection, and remanufacturing. The model also covers aspects of reverse 
logistics and refurbishing and gives insights to the well-known bullwhip-effect. 

In Kazancoglu et al. (2021), a SD model has been developed to analyze and 
comprehend the green performance of reverse logistics activities by predicting the 
environmental impact in terms of CO2 and other emissions. Figure 5.1 shows an 
extract of the causal loop diagram of the reverse logistics model presented. 

Starting with the estimated total distance of routes—influenced by several factors 
including the country population—the total distance of routes is created on a monthly 
basis. Here, a forecast has been computed on historical data of more than 5,000 routes. 
The distances are then divided into one-way and round-trip distances. Furthermore, 
the number of routes and customer returns are estimated within the model. Once 
a one-way trip is planned, the return of that route is unplanned and creates emis-
sions caused by non-value-adding activities. For round trips, different types of trans-
portation tasks are differentiated, e.g., empty returns, pallet transportation, customer 
returns, or milk-run distribution, which all have different effects on CO2 emissions, 
further differentiated into value-adding and non-value-adding activities (not shown 
in Fig. 5.1). The authors show that by decreasing the percentage of planned one-way-
trip distances from 23 to 10% after five years, emissions caused by non-value-adding

Fig. 5.1 Extract of a causal loop diagram of a reverse logistics model (Kazancoglu et al. 2021) 
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activities are reduced by 40%, while emissions caused by value-adding activities 
increase by 24%. 

The main challenges when setting up SD models are the data preparation and 
defining valid flows. In the case study presented by Kazancoglu et al. (2021), an 
extensive network consisting of 149 distribution points is considered, from which 
the number of routes and distances to serve all customers has to be estimated for 
future scenarios in a valid way. Considering the designated changes of the split of 
one-way tours and round-trips over time, assumptions for the resulting distances to 
be traveled need to be made, too. Here, a main difference to detailed discrete event 
models as described in the following section can be seen, where the distance travelled 
is a result of integrated planning processes. 

Alglawe et al. (2019) present a general framework for the behavior of all quality 
cost factors within the supply chain (SC). The proposed cost of quality (COQ) 
model uses a SD approach. In addition, Villa et al. (2015) develop an SD model that 
already analyzes the decisions and interdependencies between customers, retailers, 
and suppliers from an economic research perspective. Thaller et al. (2017) present 
a specific application of SD in urban logistics operations. Furthermore, La Torre 
et al. (2018) show a SD model that examined customer behavior from a last-mile 
perspective. 

5.3.2 Discrete Event Simulation Models 

Discrete event simulation can be considered the tool of choice if a multitude of 
detailed rules and algorithms have to be respected (see Sect. 1.2.2). The major chal-
lenges in the retail applications are twofold: Retail system simulation requires (i) 
a very detailed model of the material flow control and (ii) mechanisms to measure 
energy data and then to assign them to the emission drivers in order to identify 
improvement potentials (Rabe and Goldsman 2019). 

With respect to the control strategies, retail distribution systems are characterized 
by several levels of sophisticated control systems, e.g., for inventory management, 
replenishment, warehouse management, tour planning, and many others, which are 
essential for the behavior of the system. Therefore, simulation models have to mimic 
such control systems on a rather high level of detail, much more than it can be 
considered usual in many other logistics tasks. In the specific case, further features 
can be found like mixed pallets, multi-drop delivery (requiring suitable tour planning 
algorithms), real-world order data handling, or specific cost calculation mechanisms 
such as freight cost matrices (Rabe et al. 2015). 

Measuring energy data in a global view in retail can typically be conducted 
monitoring the major drivers, which are transport means and warehouses. Energy 
consumption of transport means is quite well researched (see also Chap. 4) and not 
discussed here. For warehouses, the major energy consumption raises from temper-
ature regulation, which can be heating in winter and—much more relevant—cooling 
and refrigerating. Here, the total energy can normally be calculated rather easily, as
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it hardly depends on the logistics behavior. Therefore, the major challenge is often 
not the determination of the global energy consumption, but the assignment to the 
cost drivers (see Sect. 5.3.3). 

Transportation processes Transport planning, i.e., solving a capacitated vehicle 
routing problem (VRP), needs to be an integral part of respective simulation models 
for retail distribution networks. Here, numerous restrictions are to be taken into 
account: 

• Modeling fleets of trucks (of different types, including sleeping cabins, as these 
can have a significant impact on possible tour lengths) 

• Truck capacity: Weight, volume, computation of detailed storage plans 
• Maximum driving time, pauses, multi-day-trip restrictions 
• Time windows for the delivery at stores or customers (e.g., inner-city restrictions), 
• Truck type restrictions (e.g., no trailer allowed in certain urban areas, which makes 

it necessary to model tours that might include decoupling of a trailer (“outside of 
town”) and picking it up again after serving a customer or store 

In this context, the model validation is often problematic, since the number of 
tours and the distance travelled must be consistent with reality in order to obtain valid 
results. In order to obtain a valid model, also modeling the road network including 
possible traffic jams with rules for late arrivals (re-planning) might be necessary. 
With respect to results considering the energy consumption, the maximum speed for 
road segments should also be part of the model, as the energy consumption highly 
depends on the speed of the vehicles. 

Within the simulation, daily tours often need to be computed to obtain valid overall 
distances and road segments to be taken due to stochastic demands with varying 
customers to be visited. In this context, simulation tools should offer the possibility 
to define respective problem formulations for the underlying VRPs and different 
heuristic approaches for solving dynamically occurring problem instances within 
each simulation run. Here, a possible process extension might be the decoupling of 
trailers before entering the city. A further extension is the planning of pickup-and-
delivery tours, where a truck not only visits customers (or stores), but also picks up 
goods from suppliers on the same tour. In this context, Fig. 5.2 shows four different 
process types. A rather simple approach is to plan only direct tours from the suppliers 
to a central warehouse, and tours visiting several customers or stores from there (a). 
Introducing regional warehouses might lead to further direct tours from a central 
warehouse to several regional warehouses (b). An extension might be to also plan 
tours for the replenishment of the regional warehouses (c) or to further include 
suppliers on such tours, leading to combined pickup-and-delivery tours (d). Other 
combinations or process variants are, of course, possible, especially considering 
reverse logistics. For some transport relations, also multi-modal systems might be 
relevant. All these variants can have a massive impact on the energy consumption 
of the system, which is often not easy to forecast (see also the application case in 
Sect. 5.4.3).
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Fig. 5.2 Process types of retail supply 

Data basis Modeling retail distribution systems is usually highly data intensive, 
because all relevant order and transport processes of the chosen excerpt of an overall 
retail network have to be modeled (Rabe et al. 2013; example given in Sect. 5.4.3): 

• Energy consumption and CO2 emission for different means of transport in case 
of an own fleet (total costs) 

• Respective values given by the transport provider in relation to the distance 
travelled 

• Order data (real world) 
• Detailed road network, e.g., from OpenStreetMap or GoogleMaps with typical, 

daytime-dependent travel times between the respective locations, as the fuel 
consumption and energy consumption also depend on the speed and the overall 
travel time 

• Modeling different temperature zones for storage and transport that affect the 
emission of CO2 

Therefore, retail simulation models require a very sophisticated data handling 
concept with clear mechanisms to achieve data quality and reliability of the results. 

Simulation Tools These mechanisms have to be implemented in suitable tools. 
Several simulation tools may be used to model retail systems. Kuhl and Zhou (2009) 
present a concept for a simulation-based sustainability toolkit and a prototype being 
developed for modeling and simulating sustainability aspects of logistics and trans-
portation systems using Arena (Rockwell Automation 2022). The main focus is the 
simulation modeling and statistics collection of performance indicators for energy 
consumption and emissions, as they relate to sustainability in addition to traditional
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productivity measures. In particular, the modeling and statistics collection involve 
determining the objects that consume energy and generate emissions and the events 
in the systems that cause the objects to start, stop, or change the consumption and 
emission rates. Another tool is SimChain (SimPlan AG 2022), which forms a shell 
around the commercial system Plant Simulation. SimChain has the advantage that 
it natively offers very sophisticated models of control systems on different levels, 
like inventory management, replenishment and supply decisions, or tour planning, 
including the handling of mixed pallets and many other detailed features that are 
characteristic for retail distribution. Therefore, the modeler can focus on the really 
specific challenges of the current study case and just select among the available 
control models. Within the European project E-SAVE, this tool has been enriched 
with a number of mechanisms to determine energy consumption and to assign this 
to consumption drivers. 

5.3.3 Performance Indicators 

There are two challenges for the definition of key performance indicators (KPIs) in 
retail system simulation (Rabe and Goldsman 2019). The first is to measure the global 
consumption. This can be conducted quite straight-forward, if the company runs their 
own fleet of trucks and their own warehouses. There are reasonable estimates for the 
energy consumption of different means of transport that can be used to realistically 
estimate the consumption of a specific system, if the actually travelled routes from 
the simulation results are known. For warehouses, heating and cooling efforts can 
often just be handled independently of the logistics and are, thus, easy to measure. A 
more difficult situation arises, if 3rd party logistics (3PL) enterprises are contracted, 
because their data are in most cases not accessible. In such cases, modeling the whole 
system is obviously not reasonable. Nevertheless, in order to optimize the specific 
system, transports provided by a third party cannot be just neglected. Therefore, 
estimations about their figures are required, e.g., the additional load that they can 
arrange for other clients or the tours that they can accept to avoid empty returns. A 
related problem arises if the routes of customers to shops or pickup locations have 
to be modeled (see Sect. 5.4.1). 

The major issue, however, is the identification of the energy consumption drivers. 
For this purpose, the global consumption values need to be broken down and assigned 
to more detailed measures following specific distribution rules. Such rules can be 
quite subjective, but have a significant impact on the results. 

Transport energy KPI For transport means, there are usual assumptions to estimate 
the fuel and, thus, energy consumption of a truck or another means of transport 
(see Sect. 5.4). It might be necessary to apply correction factors with respect to the 
logistics case. If the truck may take additional loads, e.g., in the case of a 3PL, a factor 
should be applied that reduces the energy consumption charged to the retail process. 
On the other hand, if there are potential empty returns of the trucks to the supplier,
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a corrective factor should be added that enlarges the energy consumption following 
the empty return drive. In reality, several further aspects will appear, which influence 
the specific energy consumption in transport processes. Modeling examples could 
consider traffic jams as a function of the week day and the time of the day, analyze the 
shape of the geographic environments (hills or plains), and not to forget the behavior 
of the driver, which has been proven to be a very significant factor. Also, the number 
of traffic lights on the route might be important, as it contributes to the acceleration 
activities, which cost extra energy. Demir et al. (2014) summarize these factors under 
the five categories vehicle, environment, traffic, driver, and operations. Frequently, 
the driver’s behavior is neglected, because it is rather difficult to model. However, 
exactly this behavior is especially significant (Demir et al. 2014) and can overrule 
many of the other effects. Therefore, trying to calculate all the other categories 
can be quite questionable if the driver effects are uncertain. Another point are the 
structures of the road system, which could be expected to be different for specific 
types or topologies. Surprisingly, Rabe et al. (2020) have proven that the driving 
times and distances within different cities do hardly depend on the topology, but can 
be excellently estimated by a Euclidian distance with a correction factor of 1.234. 

The issue comes up when these energy consumptions need to be assigned to 
specific goods or groups of goods, specific suppliers, specific retail customers, 
specific regions, or following any other criteria that might help the managers in 
their optimization tasks. Splitting up the energy consumption of a truck on its load 
is easy for homogeneous loads, but becomes a challenge if there are quite different 
goods in the transport. Typical assumptions use the ratio of weight or the ratio of 
volume, or even a complicated algorithmic combination of both. Just as a sample, 
if a truck already has a load of quite heavy goods, the forwarder might decide to 
pack additional light goods on the same truck. Actually, in this case the light goods 
will be transported without any relevant additional energy effort—but how can this 
realistically be represented in the evaluation? The authors have to admit that there 
are still a number of open questions, even in research. 

Warehousing KPI The energy in warehouses is normally a complete overhead calcu-
lation. There are costs for heating and cooling, lighting, and local transport means. 
Often, the energy consumption of the local handling can be neglected against the 
massive costs of cooling. Analogous to transport, a corrective factor has to be applied 
if the warehouse is not exclusively used, where such common use is mostly quite 
well negotiated and, thus, the ratio of use can be well estimated. 

Again, the issue comes when assigning energy to goods. The basic idea is to 
split the warehouse logistics in small intervals, which are defined by any goods 
entering or leaving the warehouse or the warehouse zone under consideration. For 
each of these little intervals, the inventory can be determined by simulation, and the 
energy consumption per time unit of the warehouse can be calculated and put into 
relation to the different types of goods. Again, there are quite subjective decisions. 
The ration could be calculated, e.g., in terms of weight, volume, pieces, pallets, and 
many other criteria, as well as their combinations. A quite detailed description of 
these approaches is given by Rabe and Goldsman (2019).
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5.4 Applications 

In this section, three examples for retail distribution systems are presented, each 
addressing a different aggregation level of modeling. The first application deals with 
a core question for a central retail process, the comparison of home deliveries and 
distributed locations for customers to pick up their orders with automated parcel 
lockers. Here, a rather high level modeling approach is chosen. The second applica-
tion addresses issues of reverse logistics, i.e., the simulation of product returns, which 
have drawn quite some attention within retail processes lately. The third example 
presents a study for a European food enterprise analyzing different distribution struc-
tures with respect to the energy consumption. Further examples for applications in the 
field of retail distribution systems are presented also in Chap. 4, addressing last-mile 
parcel deliveries (Sect. 4.4.1), closely related to the first application in this section, 
and e-grocery deliveries in a Spanish city (Sect. 4.4.2). 

5.4.1 Fuel Consumption for Delivery to Parcel Lockers 

Versus Home Deliveries 

E-commerce opens up a new distribution channel for manufacturers, turning them 
into retailers. Due to more fast and hassle-free delivery, the number of parcels being 
shipped has increased rapidly, but the revenue per single delivery has declined while 
the number of delivery locations continues to grow. In a highly competitive sector, 
this puts additional pressure on limited margins. The recent pandemic crisis has acted 
as a catalyst, dramatically increasing the speed of change. Along with the COVID-
19 pandemic, online shopping has increased significantly in many categories. These 
habits appear to be continuing, as consumers express their plans to continue shop-
ping online after the COVID-19 crisis. The categories where expected growth in 
online shoppers exceeds 35% include essentials such as over-the-counter medicine, 
groceries, household goods and personal care products. In other categories, such as 
skin care and makeup, clothing, and jewelry, customer growth is expected to exceed 
15% (IPC 2020). Customer behavior drives much of the last-mile costs, such as 
missed deliveries and returns. The last-mile problem encompasses one of the most 
costly and environmentally damaging segments of the retail supply chain, where 
companies deliver goods to end customers (Brown and Guiffrida 2014). The recent 
trend toward green supply chains and social and environmental responsibility has 
led to many new green initiatives. One business strategy of retailers that is becoming 
increasingly popular is to offer deliveries via an Automated Parcel Locker (APL) as 
an alternative to home delivery. The authors consider the use of APLs such as ‘pack-
stations’ or locker boxes as one of the most promising initiatives to improve urban 
logistics activities (Boudoin et al. 2013). APLs have electronic locks with variable 
opening codes and can be used by different consumers whenever it is convenient 
for them. The APL combines multiple lockers located in homes, workplaces, train
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(a) (b) 

Fig. 5.3 Illustration of current APLs by a DHL (Beemelmanns 2016) and  b Amazon locker 
(Post&Parcel 2015) 

stations, etc. The costs of delivery through APLs are lower than home delivery and 
the risk of missed delivery is avoided. Some studies confirm that online shoppers 
will use APLs more frequently in the future (Moroz and Polkowski 2016). 

APLs are found all over the world. Boudoin et al. (2013) and  Zurel et al.  (2018) 
have provided a general overview of the different experiences. For example, German 
‘packstations’ have been in operation since 2001, with Deutsche Post DHL Group 
starting this business 20 years ago. The company currently operates more than 9,300 
APLs and plans to increase this number to 12,000 by 2023 (DHL 2022; Last Mile 
Prophets 2022). The roll-out of French APLs began in 2014, and by the end of 2015, 
200 APLs were operating in high-traffic areas of the five largest French cities (Paris 
and the Paris region, Lyon, Marseille, and Bordeaux). Figure 5.3 shows examples of 
APLs currently operated by DHL in Germany (a) and Amazon in France (b). 

Verlinde et al. (2018) note that APLs have several advantages over home delivery: 
less traffic in downtown areas, no double-parking in front of customers’ homes, fewer 
failed home deliveries, time savings, fewer kilometers, fewer stops, out-of-hours 
deliveries, and lower costs for e-retailers and delivery companies. Environmental 
benefits include reduced pollutant emissions and noise through the potential reduction 
of delivery vehicles in the city. Social benefits are expected in the form of improved 
quality of life. E-customers are free to choose the delivery time (24/7 availability) and 
the most convenient APL location to pick up or ship their parcels. In this example, a 
comprehensive comparison of the fuel consumption generated by traditional home 
delivery compared to delivery via APLs is given. 

The use case in this section takes the city of Dortmund, which is located in the 
state of North Rhine-Westphalia, Germany, as a study case. With about 600,000 
inhabitants, it is the seventh largest city in Germany. The city is divided into 62 
districts. Figure 5.4 shows the map of the city of Dortmund and the distances between 
the distribution center and demand points (districts).

For determining the total demand per district, the data of the number of parcels 
for the city of Dortmund following Rabe et al. have been used (2021). In their paper, 
the authors determined the 36-month performance of parameters such as APL users
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Fig. 5.4 Illustration of the districts in the city of Dortmund and the distances between distribution 
center and demand points (districts)

and number of deliveries using a SD model. In the same way, three scenarios S1, 
S2, and S3 were considered for 60%, 70%, and 80% of e-shopper rate, with an 
actual current e-shopper rate around 75% (Müller&Müller Consulting 2021). The 
experiments are based on Dortmund population data from December 2021 (IT.NRW 
2021). The results for the number of parcels (units) for S1 increase from 314,000 
in period 1 to 475,000 in period 36, for S2 from 366,000 to 550,000, and for S3 
from 420,000 to 630,000, each period representing a month. Figure 5.5 illustrates 
the comparison of the scenarios for the number of parcels.

The total distance for the delivery of parcels is made up of two components: 
One is the distance from the distribution center to the customer, known as the “line-
haul”. This part of the route is traditionally calculated by solving the Capacitated 
Vehicle Routing Problem (CVRP). The other part is related to the distance between 
customers, which is relevant for the home delivery scenario. In order to estimate the 
distances over the entire district, Daganzo (1984) proposes the following intuitive 
formula for calculating the length of the line haul when the distribution center is 
located outside the customer’s area: 

dlh  = 
2rn  

Q
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Fig. 5.5 Number of parcels for scenarios S1, S2, and S3 (Rabe et al. 2021)

with r being the distance between the distribution center and the area, n being the 
number of parcels to be served and Q being the capacity of each delivery van. 

For the second component, approximate values for computing the distance 
between customers can be found in Beardwood et al. (1959). The authors show 
that the distance to travel between a set of n points in area A converges to k 

√
nA, 

where A is the area containing the customers expressed in square kilometers. The 
constant term was estimated at k = 0.765, assuming compact and convex shapes for 
the areas where the tour is circumscribed (Stein 1978; Figliozzi 2009; Cárdenas et al. 
2017). 

The vehicle kilometers travelled (VKT) were calculated for all three scenarios. 
For the calculation of r, the distance between the distribution center and the districts 
has been estimated using a web mapping service. For the calculation of n, the data 
from Rabe et al. (2021) have been used again. The main road network of a district 
could be modeled for solving instances of the CVRP again to obtain more realistic 
results or validate such assumptions (see Sect. 5.3.2). 

The van capacity Q was determined as 250 parcels per trip. The monthly demand 
is distributed equally between 24 days, such that the number of tours per district is the 
same for each day of the month. For each tour, the number of parcels is computed next, 
and finally the length of each tour is approximated following the approach described 
above. Public information was used to determine the area A of each district. 

For the case of APLs, it is assumed that at least one APL operates with a capacity 
of 250 parcels per day for each district, i.e., one trip is required for every 250 parcels. 
In the case that more than one APL is located within a district, the VKT to each APL 
is approximated as twice the distance from the DC to the center of the respective 
district. 

In the case of home deliveries after 36 months, the results for the VKT show a 
wide range from about 75,000 km in S1 to almost 130,000 km in S3. The VKT results
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Fig. 5.6 Comparison of fuel consumption of home deliveries and deliveries using APLs for 
scenarios S1, S2, and S3 

in the same period in case of APL usage range from 34,500 km in S1 to 56,000 km 
in S3. 

Based on previous studies, the calculation of total fuel consumption is a crucial part 
of the approach reported here (Liu and Helfand 2009; Demir et al. 2011; Aksoy et al. 
2014). To obtain realistic results, the fuel consumption is calculated considering the 
technical data of one of the most popular commercial vehicles for last-mile transport, 
the Mercedes-Benz Sprinter Cargo van, which uses the same engine as the passenger 
version. According to the technical data, the fuel consumption is 11.9 l/100 km in 
city traffic (cf. DAT 2020 for more information on the official fuel consumption of 
the Sprinter Cargo van). Figure 5.6 shows the fuel consumption results in the three 
scenarios for home deliveries and also for the use of APLs. 

The fuel consumption for the case of home deliveries after 36 months is showing 
a wide range from about 9,000 L in S1 to more than 15,000 L in S3. The fuel 
consumption results for the same period when APLs are used ranges from about 
4,000 L in S1 to more than 6,600 L in S3. 

From the results it can be concluded that fuel consumption is directly correlated 
with vehicle type and distance travelled. The fuel consumption was calculated consid-
ering the technical specifications of the vehicle and the VKT from the distribution 
center to the delivery of the parcels to the districts. The results presented in this 
section show, on the one hand, that the use of APLs reduces VKT and, thus, fuel 
consumption by 56% compared to home delivery. 

However, it should be considered that the retail systems are not modeled 
completely in the second case, and further assumptions need to be made on how 
customers travel to the APLs. Three different customer travel types are differentiated:

• C1: Customers could use their own car for a single tour to the APL and back home 
(worst case)
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Fig. 5.7 Randomly generated customer locations and assignments to APLs within each district 
(OpenStreetMap) 

• C2: Customers could make a stop at the APL with their car or using public transport 
on a different round trip, adding only a small degree of extra fuel consumption 
for picking up the parcel at the APL 

• C3: Customers close to an APL might walk to the APL or take a bike, causing no 
further fuel consumption (best case) 

For a rough estimation of the VKT of customers to the APLs, a simple model 
has been set up, where a fixed number of customer locations (based on the area 
and the population of the district) was randomly generated. The APLs’ geographical 
locations have been defined in a way that the sum of the distances to the customer 
locations becomes minimal (assigning each customer to one of the APLs). An exempt 
of the map for scenario S3 (with a maximum of three APLs per district) is given in 
Fig. 5.7. 

For each parcel, a customer is randomly selected and then the customer travel type 
is determined. For this purpose, a simple table for parameterization is used, which 
allows for giving the respective ratios for C1, C2, and C3 depending on the distance 
to the APL. In case the distance is less than 300 m, the assumption is that 100% of 
the customers walk or take a bike to the APL. If it is less than 1.5 km, the ratio is set 
to 50%, for longer distances to only 10%. In case a car is taken, the assumption is 
that 50% of the pickups are conducted on a direct trip to the APL, i.e., the VKT are 
twice the distance from the selected customer location to the APL; otherwise, 30% 
of the distance from the customer location to the APL are added to the customer tour 
as extra km. The fuel consumption for customer vehicles is selected as 5.6 l/100 km 
in city traffic on average. 

For all three scenarios, the VKT of the customers and for serving the APLs 
outweigh the VKT for home deliveries by far, such that also the total fuel consumption 
is lower for home deliveries. Figure 5.8 represents these results for scenario S3.
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Fig. 5.8 Comparison of fuel consumption for home deliveries and APLs including customer 
pickups of parcels for scenario S3 

Of course, APLs will become more attractive with an increasing number of APLs 
per district, such that customers will mainly walk or take a bike to the respective 
APL due to the closer distances. 

5.4.2 Reverse Logistics: Simulation of Product Returns 

Retail returns are a significant component of the costs of doing business. According 
to National Retail Federation and Appriss Retail (2022), in the U.S. retail returns 
accounted for $ 761 billion in lost sales in 2021. This is a return rate of 16.6% of 
total sales. In addition to the direct costs of lost sales, companies incur the costs of 
processing the returned items which include time, energy, labor, and other resources 
associated with reconditioning and remanufacturing, repackaging, recycling, or 
disposing of the item depending on the returned condition. 

In addition to direct returns to retail stores or ecommerce retailers, companies are 
moving toward taking responsibility for the products that they produce (in some cases 
voluntary and in other cases compulsory) at the end of their useful life (as determined 
by the consumer) (Sherratt 2013). Industries such as the automotive parts industry 
have been doing this for decades. Others such as electronics and cell phone industries 
have more recently ramped up their efforts in reclaiming used products. Regardless 
of whether the product is a “new” product return or an end-of-useful-life return, 
systems are required to collect, disposition, and process the items.
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Fig. 5.9 Retail reverse logistics network flow 

To address the issue of returns, Yanikara and Kuhl (2015) present a simulation 
framework for comparing alternative reverse logistic network configurations based 
on performance measures including productivity, energy usage, and environmental 
sustainability metrics. 

The functionality of a typical reverse logistics network for retail products is shown 
in Fig. 5.9. Products returned or collected at the retailers are shipped directly to a 
sorting facility. A sorting process dispositions the products into four basic categories 
of reuse, remanufacture, recycle, or dispose. New (unused) products in their original 
packaging may be directly reused and distributed back to the retailers to be resold. 
Products that can be reconditioned, repaired, repackaged, etc. are sent to remanufac-
turing and sent for distribution either back to the retailers or to a secondary market. 
Products that are beyond repair may be sent to recycling or disposal. Reclaimed 
material from the recycled products can be sold in the scrap market. 

Although the reverse logistics process seems straight forward, there are many 
decisions that need to be made to design a sustainable system. One of the challenges 
of reverse logistics system design is the random nature of the process including return 
volumes, product types, product condition, and processing time variability, among 
others. As a result, simulation is an excellent tool for analyzing reverse logistics 
systems in a way that can respect the uncertainties, capture the interdependencies, 
and measure the trade-offs among system alternatives. 

One application of simulation to a reverse logistics network is determining the 
appropriate configuration of collection, sorting, and reprocessing. Figure 5.10 illus-
trates a group of twelve retailers that collect returns of multiple products. The chal-
lenge is to design an efficient network to process the returns. In Fig. 5.10, there are 
two potential system configurations. In Fig. 5.10a, products collected at the retailers 
are sent to a centralized sorting center with a nearby processing (remanufacturing and 
recycling) center. In Fig. 5.10b, the sorting task is distributed between two sorting
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(a) (b) 

Fig. 5.10 Two potential reverse logistics system configurations 

centers and one centralized processing center. These are just two of the many possible 
system configurations that could be considered. 

Using simulation, the dynamic behavior of alternative systems can be analyzed 
based on a set of performance metrics related to productivity, energy consump-
tion, value of resale products and recovered material, and emissions. Productivity 
measures include sorting and processing costs, inventory costs, etc. Energy consump-
tion includes the electricity and fuel for processing and transportation. The monetary 
value of the remanufactured products and material recovered through recycling can 
also be collected. Finally, the emissions generated from processing and transporta-
tion such as CO2, CH4, and N2O emissions can be collected from the simulation. 
System alternatives can be compared by evaluating the trade-offs among the various 
performance measures. Since the various performance measures are not in the same 
measurement units, another option is to use a weighted factor comparison to generate 
a score on which the system variants could compared. 

5.4.3 Distribution Structures in the Food Sector 

The third application presented here is a study at a major European food enterprise, 
which operates European-wide with different product categories and production sites 
in several countries. The study has been focused on two types of goods, namely 
noodles and related sauces (“pasta”) and crispbread, and furthermore on a single 
market (Germany) and one large supermarket chain as the customer. The supermarket 
chain supplies the retail shops—which run under several different brand names— 
from regional distribution centers. Consequently, the customers (or sinks) of the 
distribution from the food company’s point of view are these distribution centers.
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In the as-is situation, both distribution systems have been independent. Bread was 
send with trucks from the WASA factory in Celle (northern Germany) to the regional 
distribution centers. Pasta was sent with a different fleet of trucks from the Barilla 
factory in the north of Italy either to the supermarket’s regional centers or to a 
consolidation center in the southern part of Germany, where it was put on stock and 
commissioned for the regional centers of the supermarket on short-term demand. The 
suspicion has been that this strategy causes unnecessary waste of resources by running 
partially empty trucks, correlated with additional emissions. Thus, the question was: 
Would it be economically and environmentally reasonable to consolidate all goods 
(pasta and bread) in one consolidation center in Germany, and then try to operate 
full-load trucks from there to the regional centers? The saving by achieving better 
truck loading factors was obvious, but the consolidation centers would have either 
raised the need to transfer all bread products there, or else to first convey all pasta 
products to the north of Germany, even if half of it would later be ordered from the 
south. Therefore, the question required a careful analysis, which has been conducted 
in the framework of a European-supported project (Rabe et al. 2015). 

Based on the real data from the IT systems of the manufacturer from one complete 
year, all products have been filtered that belong to the addressed product groups and 
are purchased by the selected supermarket chain. The network included 586 locations. 
Within the one-year time period under study, the WASA network had 8,006 orders 
and Barilla received 13,218 orders. A number of different scenarios was defined, 
with a consolidation center in the south or the north, or even both (see examples in 
Fig. 5.11). 

The study was based on the supply chain simulation tool SimChain, which in 
this enhanced version has been developed during the conduction of the mentioned

Langenau 

Mannheim 

Parma 

Celle 

Neuss 

Parma 

Celle 

Fig. 5.11 Two examples for potential location of consolidation centres (Rabe et al. 2015) 
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European project and enriched with a suitable data model to calculate and assign 
energy consumption (Rabe et al. 2013). Unexpectedly, the results have shown that 
the as-is situation provides the best results in terms of all categories costs, emissions, 
and service levels. Actually, with the variants energy consumption would be about 9% 
higher than currently. The worst results occur when all goods pass through only one 
distribution node. Therefore, it can be concluded that the added transport of goods to 
the consolidation centers is overcompensating the benefits that are achieved by the 
higher truck loads. Details of the considered scenarios and more detailed results can 
be found at Rabe et al. (2015). 

5.5 Conclusions and Outlook 

In this chapter, an overview has been provided of the simulation of retail distribution 
systems along with three applications. Looking at the literature, the explicit consid-
eration of energy consumption and CO2 emissions has become of higher interest 
in the last years, with the idea of green supply chains and a stronger focus on 
reverse logistics appearing in more and more publications. A broad application of 
such models, intending to reduce emissions and energy consumption, is still on its 
way, especially when analyzing large retail systems. Here, system dynamics can be 
used for rather strategic decisions looking at markets and long-term developments, 
while discrete event simulation is an excellent tool to analyze underlying processes 
explicitly modeling transports, warehouses (with different cooling zones), and order 
policies. 

Looking at future applications, simulation tools should be further enhanced by 
including energy-relevant properties of system elements, such as resources and build-
ings (with respect to heating, lighting, and cooling). For retail systems, a highly 
interesting and important field for future research is modeling the movements of 
customers to shops and pickup-locations, which are needed to compare the main key 
figures for energy consumption and emissions with systems containing only home 
deliveries. 
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Chapter 6 

Perishables 

Christian Fikar , Björn Johansson , Karsten Beyer, 

and Marvin Auf der Landwehr 

Abstract Perishable goods such as fruits and vegetables require timely and accurate 
handling routines to ensure a high degree of product quality across all stages of the 
supply chain. Consequently, they constitute a fundamental business factor for organi-
zations that needs to be managed in a delicate and prudent fashion. The perishability 
of products characterizes a challenging environment that requires dynamic planning 
and evaluation approaches to avoid or countervail the negative energetic impacts of 
inefficient operations. By providing a sophisticated conceptualization of the given 
system and its dynamic evolution over time, computer simulation serves as viable 
tool for analyzing and optimizing energy-related aspects of production and logis-
tics systems for perishable items. This chapter reviews the current state of research 
for simulating energy-related aspects of perishable products and highlights common 
energy performance indicators such as food waste, emissions, and temperature. To 
outline contextual interdependencies and provide practical insights into the use of 
simulation to assess energy aspects of perishables, three use cases are presented. 
These cases elaborate on the energetic implication of a juice production plant in 
Sweden, the estimation of food quality losses in regional strawberry supply chains 
in Austria, and the energy and media consumption of a beverage bottling plant in 
Germany.
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6.1 Introduction 

Efficient and effective management of perishables continues to be a major success 
factor for manufacturers, suppliers, and retailers. Perishables refer to items that 
are subject to decay, ruin, or deconstruction and are present in various industries, 
including food, newspapers, medications, blood products, and organs (Jbira et al. 
2018). Typically, these kinds of products account for a large proportion of sales, 
while serving as means for differentiation and creation of competitive advantage. 
Moreover, perishables tend to feature higher gross margins, which come along with 
increased costs for specific requirements in terms of labor, transportation, and pack-
aging (Zhang et al. 2021). Since their utility to customers is highly limited based 
on their restricted lifetimes, which, in turn, entails short replacement cycles, they 
constitute both a major cost factor for organizations and a noticeable opportunity to 
increase sales revenues (Jbira et al. 2018). 

To ensure high degrees of profitability, the production, storage, and transportation 
of perishable items needs to be supported by sophisticated machinery and infras-
tructure that meet energy-intensive requirements such as cooling or air humidity 
(Gharehyakheh et al. 2020). Storing and handling routines of perishable products 
have the dual goal of preserving the quality and safety of items, which is affected 
by the microbiological, physiological, biochemical, and physical activities occurring 
throughout the lifecycle, as well as fostering fast and reliable fulfillment processes. 
For the former objective, energy is used extensively to guarantee continuous refrig-
eration during production, storage and transportation and, consequently, slowing 
down the quality decay speed, contributing a major share of operational costs and 
significant emissions (Fan et al. 2021). For the latter goal, comprehensive supply 
and distribution networks as well as shipping capabilities are required, implicating 
considerable amounts of transportation-related emissions (De Keizer et al. 2015). 

As synopsized in Fig. 6.1, the perishability of products and the uncertainty in envi-
ronmental conditions experienced throughout the supply chain characterize a chal-
lenging environment that requires dynamic assessment and management approaches 
to avoid or countervail the negative effects of inefficient operations concerned 
with these kinds of products. Due to the fact that perishable products feature 
unique temporal (e.g., lifetime), operational (e.g., cooling) and spatial (e.g., storage) 
constraints as well as numerous decision variables such as inventories and lead times, 
their underlying production systems and supply chains are more complex compared 
to other industries (Van der Vorst et al. 2009). This complexity is not problematic 
per se, however, it makes it difficult to define exact analytical models and, therefore, 
requires a methodological approach that is capable of capturing uncertainties and 
stochasticity in multi-actor settings, while at the same time enabling to investigate 
multiple hypothetical configurations (Pirard et al. 2011). In this context, computer 
simulation has proven to be an effective tool for analyzing and optimizing energy-
related aspects of production and logistics systems that are concerned with perishable 
products. The investigation of a system by means of simulation models enables deci-
sion makers to develop a sophisticated conceptualization and understanding of the
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Fig. 6.1 Properties and 
challenges of supply chains 
dealing with perishables 
(CCP: Central Counterparty 
Clearing) 

system and further allows for evaluating the dynamic nature of a phenomenon’s 
evolution over time (McHaney 1991). 

6.2 Simulation Background 

Historically, simulation models have been employed in manifold contexts that involve 
perishable products. On the one hand, they can serve as tools for studying the behavior 
of different systems, including supply chains (e.g. Fan et al. 2021, Ketzenberg et al. 
2015, Leithner and Fikar 2019), production plants (e.g., Akkerman et al. 2007; Ivanov 
and Rozhkov 2020; Kouki et al. 2013; Polotski et al. 2021), inventory management 
routines (e.g., Bottani et al. 2014; Zhang et al. 2021), and logistics networks (e.g. 
Haass et al. 2015, Lin et al. 2017, Lütjen et al. 2013). On the other hand, simulation 
technology is a viable instrument to identify suitable avenues for alternative process 
flows or system designs and optimize operational standards (e.g., Czerniak et al. 
2021; Haijema et al. 2009; Noordhoek et al. 2018). In the context of food, scholars 
commonly model food quality changes and time temperature indicators to monitor 
the temperature conditions of food items throughout distribution on an individual 
basis (e.g., Psomas et al. 2011; Scott and Heldman 1990; Van der Vorst et al. 2009). 

Simulation-based research on energy indicators generally involves a high amount 
of probabilistic system parameters (e.g., consumer demand or spoilage duration). To 
analyze or optimize such stochastic systems, simulation models capable of accom-
modating a multitude of stochastic and deterministic factors need to be formulated. 
According to Kelton and Sadowski (2009), a discrete event simulation (DES) is 
particularly useful to capture the inherent dynamics of probabilistic systems and 
optimize process-related workflows. The DES methodology requires the modeler to 
specify event triggers that determine discrete state changes during the execution of 
the simulation model, which is also referred to as time-advancing mechanism (Lin 
et al. 1996). Since it enables to track specific items and individual entities, this type of 
simulation is more appropriate than continuous simulation approaches (e.g., System
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Dynamics) for analyzing energy-related performance indicators of production and 
logistics systems involving perishables. Moreover, Monte Carlo simulation is widely 
used by scientists and engineers to investigate decay effects of perishables during 
production, storage, and transportation phases (e.g., La Scalia et al. 2019). 

Nevertheless, depending on a study’s purpose, context of investigation, and 
problem space, the individual applicability of simulation methodologies can vary. 
While DES tools tend to stress logistics analysis and supply chain productivity, 
allowing for a substantial assessment level concerning systemic energy indicators 
such as electricity consumption, their focus on product quality and sustainability 
optimization is rather limited (Van der Vorst 2009). In turn agent-based modeling 
(ABM) and related simulation methods offer a natural way to model individual enti-
ties in multi-actor settings and implement multi-tier architectures (Behdani et al. 
2012). Such a multi-tier architecture could consist of a social layer and a physical 
layer, whereby the social layer models each actor as an autonomous agent that makes 
decisions and interacts with other agents, and the physical layer incorporates objects 
that perform logistic activities, emit pollutants, and consume energy (Holmgren et al. 
2012). Other simulation techniques include numerical simulation (e.g., Chatzidakis 
et al. 2004; Haass et al. 2015) and tool-specific building energy simulation (e.g., 
Burek and Nutter 2020). 

Finally, scholars occasionally employ hybrid approaches that combine mathe-
matical optimization and simulation into a single solution procedure to ensure a 
more holistic level of assessment (Hatami-Marbini et al. 2020). In a nutshell, hybrid 
methods allow for integrating both techniques in different forms and directions. For 
instance, local optimizations can be used to set parameters of a simulation model 
(e.g., Pirard et al. 2011), or a simulation model can be employed as means of solu-
tion evaluator in a search procedure (e.g., Ding et al. 2009; Melouk et al. 2013). 
Correspondingly, simulation and mathematical optimization can also be utilized in a 
sequential or iterative procedure, such as given in cases where simulation is used to 
provide feedback for re-optimization (e.g., Safaei et al. 2010; Sel and Bilgen 2014). 
Apart from coupling mathematical optimization and simulation, hybrid simulation 
can also refer to the combination of different modeling approaches or the interplay 
of simulation and machine learning (Mustafee et al. 2015). An overview on different 
categorizations of hybrid simulation along different dimensions can be found in 
Figueira and Almada-Lobo (2014) as well as Brailsford et al. (2019). 

6.3 Energy Performance Indicators 

Energy performance indicators can be assessed in a multiplicity of facets. Thereby, 
energy-related parameters in extant simulation-based research on perishable items 
can be clustered alongside three research streams, which correlate with the system 
under investigation, namely (1) supply chain management, (2) distribution, and (3)
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production. Table 6.1 provides an overview of the investigated energy-related perfor-
mance indicators of selected studies for perishables in order to synopsize relevant 
indicators in scientific research.

In terms of the problem domain, supply chain management describes “the inte-
grated planning, coordination, and control of all logistic business processes and 
activities in the supply chain to deliver superior customer value at less costs to the 
supply chain as a whole, while satisfying requirements of other stakeholders (e.g., 
the government or non-governmental organizations) in the wider context of the total 
supply chain network” (Van der Vorst et al. 2009, p. 6611). Energy performance indi-
cators of supply chains related to perishable products include energy consumption, 
pollutant emissions (e.g., CO2), as well as food loss and waste. While the former 
indicators constitute direct energy parameters, food waste features an indirect energy 
relation, since it can be synthesized with energy consumption rates for different cate-
gories of perishable items as well as the related production steps to calculate energy 
equivalents and losses (Cuéllar and Webber 2010). Similarly, greenhouse gas emis-
sions can be associated with food losses and waste (Dong et al. 2021). In contrast to 
food losses, which refer to the quantity of edible food products that is lost across the 
supply chain, food waste describes the number of discarded products at the end of 
the supply chain and is, thus, only applicable to retailers and consumers (Hu et al. 
2019). In summary, it can be said that food losses and waste entail a certain amount 
of energy and carbon that was wasted during agriculture, transport and production 
activities. 

Research streams focusing on distribution predominantly examine constructs 
concerned with storage, handling, and transportation of goods to the customer, 
including vehicle routing, network performance, and vehicle design. Energy-related 
aspects in simulation-based research typically relate to greenhouse gas emissions and 
mileages, which accrue due to the required transportation activities. Moreover, energy 
consumption of refrigerants and cooling infrastructure are commonly researched, 
since distribution activities take a major share of the total energy consumption of 
refrigeration in the food industry (Wu et al. 2019). 

Finally, production-related studies leverage simulation methods to investigate 
problems in the fields of production planning (cf. Hatami-Marbini et al. 2020), 
material flow management (Forster 2013), and building energy consumption (Santos 
et al. 2013). Prominent energy performance indicators are energy consumption in 
terms of electricity, water, steam, acid and gasses, as well as electrical power. More-
over, concerning indirect factors, machine utilization and food waste are commonly 
researched and can be used to draw conclusions about energy consumption or energy 
requirements (Hatami-Marbini et al. 2020).
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Table 6.1 Energy-related performance indicators in simulation-based perishables research 

Reference Stream Perishable 
items 

Approach Energy-related 
indicators 

Other 
indicators 

Aiello et al. 
(2012) 

SCM Food MCS Food wastea Product 
lifetime, 
Product 
quality 

Auf der 
Landwehr et al. 
(2021) 

DIST Food ABM CO2 emissions, 
mileagesa 

None 

Burek and Nutter 
(2020) 

SCM Food Others CO2 emissions, fossil 
energy consumption, 
food wastea 

Water 
scarcity 

Chatzidakis et al. 
(2004) 

DIST Food Others Temperature, energy 
consumption 

None 

de Keizer et al. 
(2015) 

DIST Flowers HS Mileagesa Product 
quality, 
system 
costs 

Dong and Miller 
(2021) 

SCM Food MCS CO2 emissions, energy 
consumption 

None 

Fan et al. (2021) SCM Food ABM CO2 emissions, energy 
consumption, food 
wastea 

Product 
quality, 
system 
costs 

Fikar (2018) DIST Food ABM Mileagesa, food wastea Product 
quality 

Forster (2013) PROD Beverages DES Energy consumption, 
water, steam, acid and 
gas consumption 

Air 
pressure 

Gharehyakheh 
et al. (2020) 

DIST Food HS CO2 emissions System 
costs, 
product 
lifetime 

Gruler et al. 
(2017) 

DIST Garbage HS Mileagesa System 
costs 

Haass et al. 
(2015) 

DIST Food Others CO2 emissions, food 
wastea, temperature, 

Product 
quality 

Hatami-Marbini 
et al. (2020) 

PROD Not 
specified 

HS Machine utilizationa, 
food wastea 

System 
costs 

Ketzenberg et al. 
(2018) 

SCM Food Others Temperature System 
costs, 
product 
lifetime 

La Scalia et al. 
(2019) 

SCM Food MCS CO2 emissions, food 
wastea 

Revenue

(continued)
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Table 6.1 (continued)

Reference Stream Perishable
items

Approach Energy-related
indicators

Other
indicators

Leithner and 
Fikar (2019) 

SCM Food DES Food wastea Product 
quality, 
service 
levels 

Rijpkema et al. 
(2014) 

SCM Food HS Food wastea System 
costs, 
product 
quality 

Santos et al. 
(2013) 

PROD Food Others Energy consumption, 
electrical power 

Product 
quantity 

Shamsi et al. 
(2014) 

DIST Not 
specified 

Others CO2 emissions, 
mileagesa 

System 
costs, 
empty trips 

van der Vorst 
et al. (2009) 

SCM Food DES Energy consumption, 
CO2 emissions 

Product 
quality, 
logistics 
costs 

Zhang et al. 
(2021) 

SCM Long/short 
lifetime 
perishables 

DES Food wastea Selling 
price, 
revenue 

Stream: DIST—Distribution, PROD—Production, SCM—Supply chain management; modeling 
and simulation approach:ABM—Agent-based modeling, DES—Discrete event simulation, HS— 
Hybrid simulation, MCS—Monte Carlo simulation 
aIndirect indicator for energy performance (e.g., can be statically converted into emissions)

6.4 Applications 

To demonstrate the applicability of simulation methodologies for assessing energy-
related aspects of perishables, the following section elaborates on three distinctive 
use cases. The first case (Sect. 6.4.1) combines a DES approach with a life-cycle 
assessment procedure to improve decision-making for juice production systems and 
quantify energy consumption as well as waste, air pollutants, and ethene emissions. 
Using the exemplary case of regional strawberry supply chains in Austria, Sect. 6.4.2 
elaborates on the integration of food quality models and inventory management 
policies to allow for estimating the quality of fresh food items depending on storage 
temperatures and durations. Finally, the third use case presents a simulation tool that 
is based on a discrete time approach. The simulator is leveraged to assess the media 
consumption of a beverage bottling plant in Germany, outlining the implications of 
different system designs on various media such as energy and water consumption or 
CO2 emissions.
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6.4.1 Juice Production in Sweden 

The food production industry is one of the largest industries in the world. In 2021, its 
production systems were responsible for a third of global anthropogenic greenhouse 
gas emissions (Crippa et al. 2021) contributing to a larger part of our planet‘s envi-
ronmental footprint (Ritchie and Roser 2020). These two factors make the reduction 
of the environmental impact from food production of crucial importance according 
to reports by Jödicke et al. (1999), reiterated by Bajželj et al. (2014). This is rele-
vant for other environmental issues including global warming, eutrophication, and 
acidification. This alarming increase in global environmental footprints persuades 
general interest within science and technology to develop more-sophisticated tools 
and measurements for assessing environmental effects. Since these environmental 
footprints in food production industry occur before, during, and after the produc-
tion processes (Ma et al. 2010), it is imperative to simultaneously assess and plan 
productivity in conjunction with environmental parameters. The authors’ interest 
in this juice production case has been to propose a method and a tool for use in 
effective production planning with reflection to environmental parameters on the 
same basis and same time frame, as well as to unify the output data on the same 
framework. This is to prevent the high risk of sub-optimization (Calvet et al. 2020), 
if only parts of the relevant parameters are considered at a time. Focus on climate 
changes and other related environmental phenomena are growing, as its stakeholders 
become more aware of how production processes and utilization of resources from 
the earth affect the environment with noticeable efforts by international standards 
(ISO 2006a, b). Lind et al. (2008) released their “Green Supply Chain Modeling Solu-
tion” for carbon footprint simulation as a solution to calculate the GHG footprint, 
which suggested ways to reduce emissions, proposing the incorporation of carbon 
offset purchases into production and footprint calculations. The models obtained 
by Kogler and Rauch (2019), Wohlgemuth et al. (2004), and Gäbel and Tillman 
(2005) are previous examples of models resulting from discrete event simulation use 
in different areas. Although there has been a gradual progress in the development 
of such models, most analyses made with this technology focus on process perfor-
mance as in Azapagic and Clift (1999), where production efficiency is measured on 
economic goals. However, little is known on DES involving production processes 
and their resulting environmental impacts. This is also in line with issues previously 
indicated by Johansson et al. (2003). Several DES strategies on how to incorporate 
energy-related factors when modeling the production processes focusing on process 
parameters with impact to system‘s efficiency from the energy perspective are avail-
able. For example, Kohl et al. (2014), Solding and Thollander (2006), Mani et al. 
(2013), Eriksson (2014), and Vicino (2015) show examples on how to create and 
use DES with more emphasis on energy consumption together with system improve-
ments. The work by Johansson et al. (2008) presents a simulation methodology 
towards DES that accounts for both the production and environmental parameters. 
In this methodology, the production parameters like batch size, batch frequency, 
production planning, and resource management were mutually simulated with the
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environmental parameters such as emissions, waste, and energy consumption. This 
resulted in an all-in-one output as intended, with the output data unified in the same 
platform. During this work, evaluation of various methods and scenarios were used 
in lifecycle assessments as supported by reports by Banks et al. (1996), Andersson 
et al. (2012), and Alexander et al. (2000). Productivity was evaluated as a measure to 
all process parameters of material, energy, waste, and the pollutants generated simul-
taneously. Three case studies were conducted, one of which was used to establish a 
common methodology as a benchmark for sustainable food production. 

Furthermore, additional steps in simulation were made to include four additional 
parameters, which are raw materials, machines, facilities, and transportation in the 
simulation process. During this activity, additional scenarios were assessed supported 
by Johansson et al. (2008) and Law and Kelton (1999) in simulating data inputs of 
environmental parameters from lifecycle assessments in combination with produc-
tion data. Changes on the manufacturing floor were also analyzed to resolve simu-
lation constraints. Results show that by performing this type of DES, some changes 
within the system could improve both environment and the productivity parameters, 
while in some cases the changes have improved one parameter while aggravating the 
other. The results are used as a baseline for decision-making in the juice production 
system. This addition also provides information on both the input and output vari-
ables of the production process, where material and energy consumption are input 
and waste, pollutants such as CO2, NOX, SO2, and ethene are generated as output. 

6.4.1.1 Juice Production Process 

The production system of juice principally consists of purée machines, mixing tanks, 
heat exchangers, buffer tanks, packaging machines, palletizers, as well as conveyors, 
pumps, and an industrial piping. In this case study, the system produces about 25 
million liters of juice annually consisting of an aseptic package line for fruit juice, 
soups, and compotes and with a system comprising up to three purée machines, 
two mixing tanks, three heat exchangers, six buffering-tanks, their palletizers, five 
packaging machines, several conveyors, pumps, as well as a huge number of pipes 
within the facility (Fig. 6.2). The facility also incorporates an incoming process 
inventory with freezers located at 20 km from the production line.

To process fruits into juice, the raw fruit is mushed into a thick liquid suspen-
sion or paste, which is generally called purée. This is conducted using the purée 
machine. The paste is then mixed with other ingredients for a distinctive taste. The 
resulting mixture is afterwards pasteurized and pumped into the buffer tanks. After 
the buffering process, the buffered mixture is sent into the packaging machine. To 
satisfy the market needs and customer demands, the processed juice is packaged in 
different shapes and sizes and finally loaded on pallets. From there, delivery is either 
made directly to customers or through warehouses as stocks to be delivered to future 
customers. After the dispatch of products, the leftover paste in the pipes is discharged 
as waste, characterized as low-value products, or recycled to the incoming process
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Fig. 6.2 Overall description of the production system, combined DES-LCA model of the system

inventory units to be frozen and reinjected into the production line if considered as 
high-value product. 

6.4.1.2 Simulation Model 

The production system is simulated with normal production data like flow speed in 
pipes, setup times of machines, shift schedule, tank volumes, machine speeds, speed 
on conveyors, palletizing times, etc. At each step, the model is also incorporated 
with environmental impact data. This type of model is referred to as the cradle-to-
gate Life-Cycle-Assessment (LCA) data and used for the incoming materials and 
ingredients like:

• Apples
• Oil
• Oranges
• Paper
• Water
• Aluminum
• Polypropylene
• Electricity 

Within this model, individual ingredients are described with respect to five features 
characterizing the environmental impacts, which are:

• Acidification potential measured in grams of SO2 equivalent (g SO2 eq.)
• Eutrophication potential measured in grams of NOX equivalent (g NOX eq.)
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• Energy use, measured in megajoules (MJ)
• Global warming potential measured in grams of CO2 equivalent (g CO2 eq.)
• Photo oxidant formation potential measured in grams of ethene equivalents (g-

Ethene) 

To run the simulation, the ingredients and materials are entered into the model each 
with their collective values for environmental impact amongst the above five features 
of emissions. The assessment of each event is performed from the perspective of 
the resource rather than the product perspective: A machine wasting a part of its 
product releases as much environmental pollutants as if it is operated. If two different 
machines with the same functionality were to be evaluated, a comparison between 
them would be made based on their environmental effects. This is confucted by first 
running the simulation with one machine and then making use of only the machine 
in comparison. Figure 6.3 shows a snapshot of the simulation model made in Rohrer 
(2003) of the juice production model from Johansson et al. (2008). The tanks are 
represented by the structures in cylindrical shapes, while the filling and packaging 
machines are represented by the large square objects and the conveyors correspond 
to the line between them for loaded packages. The pipes are not shown in Fig. 6.3. 
In the lower part of the picture there is a large conveyor that marks the exit point of 
the system, where the juice packages loaded upon euro pallets exit the production 
system during delivery. 

Fig. 6.3 Screenshot of the simulation model
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6.4.1.3 Results and Discussions 

Several analyses have been conducted and some additional ones are in progress. 
The most interesting results are briefly described and discussed. To ensure that the 
model‘s reality matched sufficiently the real-world system, a reference scenario has 
been set as a baseline with data from the past years’ production schedule. To validate 
the model, a comparison of one year of simulated output data from the production 
orders was run. This output was compared to the actual output from the factory 
according to Sargent (2000). The initial test was used as a validation model with 
settings of the production year 2006. Comparisons between the models have been 
performed with respect to the real-world system as presented in Table 6.2. 

The variation between the model and the real-world data is acceptable, as the 
model excludes other products (wine produced in the real factory is excluded and 
constitutes 12% of the production) in the analysis. Critical faults resulting from 
excluded machines in the analysis justify the low percentage of waste in the model, 
which is equivalent to 0.3% of waste considered in the real-world system. During 
discussions with personnel at the production company, the model was judged as 
valid, on the basis that the interval of confidence was satisfactory when considering 
the excluded products not considered in the analysis. When the base model is run in 
continuous mode (24/7), the standard deviations between consecutive runs were less 
than 2%. 

After a valid model was achieved, the model was used to simulate the system in 
continuous mode to compare it with alternative solutions on how to operate a juice 
production system. Several tests made with variations, for instance, more or fewer 
tanks, smaller or bigger batches, less resetting, additional resources, less breakdowns, 
etc. A detailed discussion is published by Persson and Karlsson (2007). A selection of 
interesting results is presented here. The company was most interested in a compar-
ative analysis to outline the necessary changes of batch sizes, as this could result in 
the reduction of production times. Figure 6.4 describes the relationship between the 
batch size and the production time. From this figure, lowering the batch size shortens 
the production time. However, to determine the total number of hours necessary for 
producing products annually, it is important to obtain a more-precise or minimum 
batch size.

Figure 6.5 presents the relation between batch size and product waste. An increase 
in waste results when the order size becomes too low. The figure also shows that there 
is no significant change when larger batch sizes than 20 are produced. However,

Table 6.2 Model validation 

Simulation model data indexed versus real world 
(%) 

Real-world data (%) 

Raw material (kg) 88 100 

Finished goods (kg) 88 100 

Waste difference 0.3 
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Fig. 6.4 Manned production 
time versus batch size

lower batch sizes increase the waste significantly, because of the products lost due 
to the cleaning of pipes and tanks. In Fig. 6.5, each dot represents one simulation 
experiment with several runs. 

To optimize the production, the next step has been to determine the machines or 
production parts limiting the production process with attention to the most critical 
ones, following the theory of constraints described by Goldratt (1990) and decision 
support tools by Kheawhom and Hirao (2004). To realize this, the resource utiliza-
tion from the reference model was considered. By adding either one or more parallel 
resources to the system at possible bottleneck locations, different solution options 
have been examined. Prior to the simulation, it had been envisaged that it could be 
reasonable to add another mixing tank and an additional operator. However, the simu-
lation results revealed that this measure would not yield a positive result (Fig. 6.6).

Fig. 6.5 Percentage waste 
of batch versus indexed 
batch size 
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Fig. 6.6 Production hours 
per resource 

The addition of either a heat exchanger or a heat exchanger together with a new fill 
machine yielded more interesting results. 

The previous considerations have followed the usual intensions to study a typical 
DES. In the next step, the combination of a typical DES analysis with that of the 
environmental analysis from the LCA perspective is put into focus. To simultaneously 
decrease the environmental impact while reducing the lead times in production, more 
emphasis has been put on adjusting the batch sizes and their sequence. The resulting 
environmental footprint related to the production system with a specific batch size 
and sequence could be accounted for an annual production as shown in Fig. 6.7. In  
this figure, the reference refers to the current batch size and sequence adopted in 
the production system. In case A, the batch size was doubled for the same sequence 
compared to case B, where the batch size was halved again for the same sequencing, 
whereas case C represents the minimal or theoretical global warming potential for 
optimizing both the batch size and sequence. For direct application, case C would 
be unrealistic, as it leads to considerable stock of finished goods, although it helps 
to set a target for achieving low global warming potential and reduced production 
time.

Furthermore, an analysis has been conducted using this model to determine to what 
extend the in-process inventory was unfriendly to the environment. This was achieved 
because of the comparison of outcomes by either (1) keeping the current system 
unchanged (with in-process inventory located 20 km away for the main production 
facility) or by (2) skipping the reuse of in-process inventory, discarding or wasting 
the additional purée sequentially prior to the completion of each batch. The results of 
this in-process analysis show that it is preferable to reuse the additional purée within 
the system—which involves freezing and shipping processes—as opposed to wasting 
the purée, which consequently leads to considerable environmental effects (in a ratio 
of 1 to 400 in additional global warming potential) in the production system.
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Fig. 6.7 Relative production in relation to global warming potential

6.4.1.4 Lessons Learn 

Steps have been taken to analyze complex production systems with emphasis on 
the effects of production systems in the environment. A simulation experiment tool 
was developed that helps to optimize the complex processes. The use of this tool 
ensures analysis and optimization of both process and environmental parameters 
of the production system, and acts as a solution to suggest needs for improvements 
when diagnosing existing process lines. In comparison to previous methods that have 
considered the analyses of environmental and process parameters as separate entities, 
this tool has proven to be more time-efficient. The authors also find this method more 
dependable, since all results are obtained in the same unified data framework. There-
fore, due to today’s production‘s impact on our environment, environmental consid-
erations should be rated as non-dissociable parameters when planning, designing, or 
evaluating a company‘s overall performance. 

6.4.2 Food Waste in Regional Strawberry Supply Chains 

of Austria 

The logistics of fresh fruits and vegetables (FFVs) is challenged by various uncertain-
ties present in supply, demand, and product characteristics (Fredriksson and Liljes-
trand 2015). Consequently, simulation models are frequently used to provide decision 
support and derive managerial implications on how to guarantee food security, reduce 
costs, and act more environmentally friendly. An overview on related work can be 
found in Soto-Silva et al. (2016), Utomo et al. (2018), and Fikar (2020).
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Of particular interest in this context is the challenge of food losses and waste, 
whereas the former refers to the quantitative and qualitative loss of food from 
harvest up to—but not including—retail and the latter to food wasted at the retailer 
and consumer household levels (United Nations Environment Programme 2021). 
According to recent studies, 14% of all food produced is lost (FAO 2019) and 17% 
wasted (United Nations Environment Programme 2021), highlighting the great need 
for innovative tools to facilitate more-sustainable operations in the future. For FFVs, 
this is of particular importance as loss levels are generally higher for such food types 
compared to other categories (FAO 2019). The following part provides a use case on 
how simulation modeling can facilitate better decision making in food supply chains 
and, consequently, how it can contribute to achieving the goal of reducing food waste 
levels and related energy consumption. 

6.4.2.1 Regional Strawberry Supply Chains 

As a sample setting, a regional supply chain for organic strawberries as introduced 
in Leithner and Fikar (2019) is considered in this work. Berries are highly perishable 
products with short shelf life and, consequently, require special attention during food 
logistics processes (Nunes et al. 2014). In the investigated setting, the products are 
harvested at multiple farms throughout the study region and are subsequently trans-
ported to cold stores for initial cooling. At such cold stores, the quality is checked. 
If a certain quality threshold is passed, the items are shipped from the cold store 
to a central distribution center, where the quality is once again checked to see if it 
matches the specified requirements of the retailers. Next, strawberries are shipped 
to various retail locations, where customers can buy the products for consumption. 
If no purchase occurs, the items are considered as food waste. An overview of this 
setting is provided in Fig. 6.8. 

In this work, the focus is set on benefits of providing cooling and its impact on 
lowering food losses and waste. Ideally, the strawberries are cooled immediately after 
harvest, and a low temperature is maintained throughout the entire product life cycle. 
In reality, however, strawberries are often subject to higher temperature at various

Fig. 6.8 The simulated regional strawberry supply chain setting 
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points in the supply chain. For instance, harvested items are often waiting on the field 
until the vehicle is full, and cold stores are not always available in close proximity to 
the harvest location. This lack of pre-cooling time is highly critical to the remaining 
shelf life of berries, as the products often experience high quality losses in this stage 
(Nunes et al. 2014). By developing a simulation model, the impact of such a common 
lack of cooling facilities in FFVs supply chains can be investigated. 

6.4.2.2 Modeling and Simulation Approach 

The problem is investigated by the development of a simulation-based decision 
support system, expanding on the work presented in Leithner and Fikar (2019). It 
integrates food quality models and inventory management policies within a DES to 
allow for estimating the quality of fresh food items depending on storage temperatures 
and durations. At the center of the work stands the user, who defines various input 
parameters concerning the supply chain setting, demand data, available resources, 
and product characteristics. This forms the input to the simulation, which models 
multiple weeks of strawberry supply chain operations. At the end of the experiments, 
the user is provided with various key performance indicators stating, among others, 
generated sales, service levels as well as resulting food waste levels. Figure 6.9 gives 
an overview of the employed modeling framework. 

Within the simulation, each strawberry is modeled as an entity with an individual 
initial quality and parameters defining the spoilage rate of the item at various temper-
atures. Consequently, some items may be more susceptible to high temperatures than 
others. Throughout the product life cycle, the storage durations within the individual 
steps of the supply chain are recorded and the expected current quality of the items 
is constantly updated. If it falls below a certain threshold, the items may be removed

Fig. 6.9 Decision support system to reduce food waste in regional food supply chains 
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from the process at one of the previously defined quality checks. Consequently, four 
different end situations may occur for each strawberry: (i) it is bought by a consumer, 
(ii) it is removed at the cold store level for alternative usage; (iii) it is removed at the 
distribution center for alternative usage, or (iv) it is wasted at the retailer. Food waste 
at the consumer level is not considered in this work. 

Queues are used to model inventories. To decide the order of the queue, i.e., 
which strawberries are shipped first to the subsequent supply chain stage, three 
common stock rotation schemes are implemented. The first one, first expired—first 
out (FEFO), focuses on reducing food losses by always shipping items with the 
shortest remaining shelf life first. Last expired—first out (LEFO), in contrast, priori-
tizes items with long remaining shelf lives to offer the customer high-quality products. 
Additionally, the decision on which items to ship first may be randomized without 
following a specific decision rule. 

All movements within the simulation model are performed by resources with 
a specified capacity. While items are shipped from the farm to the cold store and 
to the distribution center based on a predefined shipping schedule, shipments to 
the retail stores are based on orders following a base stock policy. Once the items 
reach the retail stores, they can be bought by a customer. As the customers’ picking 
behavior has a major influence on food waste (Teller et al. 2018), the three previously 
introduced picking settings are again integrated within the simulation framework to 
model which items are selected first by the customers. At this point, the strawberry 
process ends, i.e., any additional steps after the customer’s purchase at the retailer 
are not considered. 

6.4.2.3 Results 

The following computational experiments investigate the impact of having cooling 
equipment available at various stages in the supply chain on food waste. The base 
setting and all input data are based on the work presented in Leithner and Fikar 
(2019). It consists of 59 organic strawberry farmers, 359 retail store locations and a 
single distribution center, all located either in Lower Austria or Vienna. The model 
was developed with the simulation software AnyLogic 8.7.9 with all procedures 
coded in Java. Reported results represent the average value over 100 replications for 
each investigated setting, corresponding to around 248,000 simulated strawberries 
per run. Each replication starts with a warm-up phase consisting of eight weeks 
of operations to set up the system. Only strawberries harvested in the subsequent 
weeks 9 to 12 are counted to the statistics. The simulation stops once all strawberries 
harvested during these weeks reach their final state, i.e., have left the process. 

Within the first set of experiments, the number of cold stores is varied from having 
only a single cold store for all farmers in the region to having a cold store at each 
farm location. The former setting results in lower fixed costs, however, substantially 
increases transport and further leads to additional food quality losses due to the lack 
of pre-cooling compared to the latter one. In case of a limited number of cold stores, 
the farms running a cold store are set randomly. Farms without a cold store ship all
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strawberries to the nearest one. No capacity constraints at the cold store are set in order 
to enable this experiment and alternative distribution channels are not considered in 
order to solely focus on the impact of pre-cooling. All three demand priority settings 
of the customers (FEFO, LEFO, random) are investigated with FEFO implemented 
as the stock rotation scheme of the distributor. 

Figure 6.10 shows the results of these computational experiments with each point 
representing the average percentage of reference products wasted over all replica-
tions. As the results highlight, the customers’ picking behavior in the store greatly 
impacts food waste. If customers always take the items with the longest shelf life first, 
i.e., follow a LEFO strategy, food waste levels are substantially increased compared 
to a random or FEFO picking behavior. This factor, however, is out of the control 
of a regional food supply chain. Consequently, companies need to consider different 
ways to reduce food waste levels. 

One potential option is to invest in additional cooling equipment. Therefore, 
the second set of experiments investigates the impact of having additional cooling 
equipment available at retail level. Strawberries are commonly kept in stores at 
ambient temperatures within the study region (Leithner and Fikar 2019), substan-
tially reducing the keeping quality of strawberries over time. Within the first set of 
experiments, a storage temperature of 20 °C at retail stores was assumed. Figure 6.11 
shows the impact on food waste of reducing this storage temperature to 3 °C in incre-
ments of one. Each dot represents again the average value of 100 replications for 
each setting.

As the results show, the storage temperature at the retailer has a large impact 
on food waste levels, again highlighting the importance of having proper cooling 
equipment available in FFVs supply chains. If the customers follow a LEFO strategy, 
food waste reaches the maximum, followed by random and FEFO. Additionally, one 
can derive from this figure that the reduction resulting from a decrease of 1 °C in 
storage temperature changes based on both the initial temperature and the customer 
picking behavior in the store. Additionally, it indicates a common trade-off present 
in perishable food operations. To reduce food waste, additional cooling is required, 
which leads to an increase in energy consumption. Simulation models enable to

Fig. 6.10 Impact of having 
pre-cooling available at farm 
level on retailers’ food waste 
levels considering various 
customers’ picking 
behaviors in the stores 
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Fig. 6.11 Impact of having 
cooling equipment available 
at retail level considering 
various customers’ picking 
behaviors in the stores

analyze such trade-offs in detail to improve decision making and act more sustainable 
in the future. 

6.4.2.4 Lessons Learn 

As the results of the computational experiments show, food waste in regional food 
supply chains is impacted by a wide range of influencing factors. This includes the 
available infrastructure as well as the implemented decision rules and how customers 
pick items in the retail store. Relating to the specific use case introduced in this part 
of the work, the great need to provide efficient cooling equipment throughout each 
step of the supply chain is once again highlighted. Consequently, both policy and 
decision makers need to understand the complexity of food operations and how 
the individual influencing factors relate to each other. Simulation-based decision 
support systems enable such a holistic understanding and further allow for testing new 
approaches in a flexible and risk-free manner. This further provides various options 
for future work. For instance, this work could be expanded by incorporating customer 
behavior and adjustments over time through an ABM approach or integrate multiple 
types of FFVs simultaneously to study how various product mixes and assortment 
strategies influence food waste in retail settings. Additionally, investigating the trade-
off between the additional energy consumption required for cooling and food waste 
is of interest.
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6.4.3 Energy and Media Consumption of a Bottling Plant 

in Germany 

The food and beverage industry is caught between the conflicting priorities of high 
product quality, steadily increasing product diversity, and cost-effective production. 
Increasing energy efficiency and more-flexible production routines can sustainably 
reduce costs and, thus, increase competitiveness. Due to the foreseeable further 
increase of energy costs, the current and future ecological challenges, the associ-
ated growing public awareness, as well as legal developments, operators of manu-
facturing and packaging plants are faced with the complex challenge of ensuring 
energy-efficient and sustainable production routines. On this background, particu-
larly cost-driven businesses in the beverage and food industry have begun to analyze 
their own energy and media consumption and look for optimization strategies in this 
area. Energy costs already rank third in the operational cost structure in the food and 
beverage industry. Therefore, monetary considerations support this development, 
too. However, measures to effectively reduce energy and media consumption have 
often only been taken locally for individual systems. In this context, the discussion 
of sustainable production must take into account various aspects, which need to be 
considered simultaneously. In addition to the material efficiency of the substances and 
means used in primary production, energy efficiency plays an increasingly important 
role. Material efficiency requires knowledge about the current production processes. 
Simulation, which can be used as a standardized tool for optimizing processing and 
packaging plants, can also be employed to improve energy efficiency. 

6.4.3.1 Beverage Bottling Plant 

The given use case outlines a method for the automatic generation of simulation 
models for the holistic simulation of energy and media consumption for beverage 
bottling plants. Figure 6.12 synopsizes the main steps of the use case approach. 
Using a comprehensive and complex database with a suitable underlying database 
structure, a beverage bottling plant could be modeled and parameterized in terms of 
physical plant, articles, and production schedule. The simulation model is automat-
ically generated via an XML-based configuration file in a discrete time simulation 
environment. Finally, a holistic production plant can be simulated considering all 
energy and media requirements including a production plan. Thus, with the inclusion 
and consideration of a production schedule, a description of the energy consumption 
during inactive production times can also be made.

The object of this use case is an industrial glass refillable beverage bottling plant 
for mineral water and soft drinks of one of the ten largest mineral water companies 
in Germany (in terms of sales). The main product of the plant is mineral water. The 
plant is schematically outlined in Fig. 6.13. It is divided into three sections (material 
flows), depending on the material being transported (pallets, crates, and containers 
or bottles). The interlinking of conveyors allows for buffering downtimes that are
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Fig. 6.12 Overview of the main steps of the bottling factory case

caused, for example, by the failure of individual machines. If the buffer capacities 
of the conveyors are exceeded, the respective malfunctions and downtimes lead to a 
fault propagation, which is characterized as a shortage or backlog situation.

The so-called empties, which are bottles in crates, are fed to the line on pallets, 
and the crates are unstacked by the depalletizer. The crates with the empty bottles 
pass through a so-called cap unscrewer, before the glass bottles are unpacked by 
an unpacking machine onto the conveyor for containers and bottles). Then, the 
bottles are transported to a bottle-cleaning machine where they are cleaned and 
disinfected. Subsequently, they are inspected by an inspector machine for damage 
and remaining contaminants, and then filled with liquid and capped in the filling and 
capping machine. The filled bottles are inspected in the full bottle inspector for glass 
fragments and other contaminants, before they get labeled in a labeling machine. In 
the further process, the bottles are packed into the previously cleaned crates in the 
crate filler and stacked on pallets by the palletizer. The material flow of the empty 
crates is abstracted in the model and, thus, represented in simplified form by a crate 
washing machine and a crate magazine. which serves as a buffer system. In the real 
plant, a complex throughput system for crate transport is employed at this point. In 
the material flow of the pallets, the pallets are also buffered in a magazine. 

The plant is connected to an in-house data acquisition system (DAQ). Every 
two seconds, the operating mode, operating status, and power consumption of each 
machine are recorded. In addition, thermal energy, water, CO2, and compressed air 
requirements are recorded for the entire plant. The data points follow the declaration 
of the Weihenstephan standard, which is a standardized data interface between the 
individual machines and a higher-level system (Kather and Voigt 2005). It defines the 
unique and standardized semantics of the individual data points as well as the trans-
mission procedure. This makes it possible to receive and process equivalent data from 
any machine, regardless of the manufacturer. The data sets of the returnable glass 
bottling line used in the application case comprise two measurement campaigns, the 
first covering a period of two months with the above data scope. In contrast to the
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Fig. 6.13 Schematic representation of the beverage filling line under study
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period of the second measurement campaign, the first data collection was character-
ized by almost continuous production, apart from the weekend. In the second data 
collection period covering four weeks, the beverage filling plant was only in opera-
tion on approximately three days per week. The individual units were additionally 
equipped with measuring devices for recording the compressed air requirement and 
these were connected to the in-house data acquisition system. Other machines such as 
the empty bottle inspector, the full bottle inspector, and the unscrewing machine were 
also included in the ongoing measurement. The only consumer of thermal energy 
and water is the bottle washer. Its warm wastewater is used for the crate washer. 
Thus, the latter machine does not require any thermal energy on its own. The filling 
machine, in turn, is the only machine that requires CO2 for the production of certain 
products. 

A Manufacturing Execution System (MES) served as the source for detailed 
production schedules for the plant under study, which include production times, 
quantities of items produced, and other planned downtime due to, e.g., maintenance 
and cleaning. The measurement data from the DAQ were converted for the project 
into a uniform and previously defined data structure, which also serves as the struc-
ture for the data generated by the simulation. The data within the structure were 
divided into interval data, which include information such as operating mode and 
operating status, and time stamp data, which include data like consumption values. 

6.4.3.2 Modeling and Simulation Approach 

Following the findings of Osterroth et al. (2017), the operating state-related consump-
tion behavior of packaging machines is used in the modeling and simulation and 
assigned to the following energy and media types: electrical energy, thermal energy, 
compressed air, water and CO2. When defining the consumption levels, the oper-
ating mode and the operating state, which are described by a state model, are used. 
In addition, so-called planned downtimes, e.g., on a weekend when no production 
is scheduled, are recorded as a separate state. The reason is that most plants have a 
demand for energy and media even in this case. During production, different oper-
ating states can exist. These are basically divided into the normal operation of the 
machine (CL), a shortage or congestion situation (DL1), and stochastically occurring 
failure situations (DL2). 

For an automatic determination of simulation parameters, such as consumption 
quantities as well as parameters for the description of the failure behavior, a suit-
able evaluation software was developed. The parameters can be defined specifically 
for different evaluation criteria, such as article-based, container-type-based (bottle 
format) or time-period-based. The average consumptions of the individual energy 
and media types are calculated in the intervals in which the operating state does not 
change. In addition to the machine-specific determination of the total consumptions, 
a detailed statistical evaluation of the consumption values (weighted average, stan-
dard deviation, variance, standard error, and 95% confidence interval) was carried 
out. The failure behavior is determined on the basis of the operating condition of
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a machine. The time to repair (TTR) denotes the duration of the failure, while the 
failure-free runtime between two consecutive failures is defined as time between 
failures (TBF). To determine the mean TTR (MTTR), the times of DL2 states are 
used for calculation, and for the mean TBF (MTBF), DL1 as well as CL states are 
combined. The availability results are shown in Eq. 6.1. 

Availability = MTBF/(MTBF + MTTR) (6.1) 

In addition, the operating times and the downtimes are investigated with regard 
to the distribution curve of the failure behavior (failure distribution behavior). The 
suitability of the Weibull, negative exponential, and lognormal distributions was 
investigated by Voigt and others (Voigt 2004), with the Weibull and exponential 
distributions achieving the best fit. In this application, the negative exponential distri-
bution is used, because random failures are assumed with a constant failure rate and 
this describes the behavior sufficiently accurately. Moreover, the exponential distri-
bution can only be described by a single variable (β). In addition to the data from the 
DAQ, it is necessary to determine other parameters directly in the plant. Therefore, 
the topological data of the plants as well as of all machines and means of transport 
(conveyors) were determined within the scope of performance analyses according to 
DIN 8743. The set output of all individual aggregates was analyzed manually over 
the data acquisition period, e.g., by the aid of measuring light barriers. Furthermore, 
the outputs per filling article of the individual aggregates and the global reject rates 
of inspection machines were determined. All buffer lines were examined with regard 
to their buffer capacities and times. 

The modeling of processes and material flows in the form of a simulation model 
represents major obstacles for many small and medium-sized enterprises (SME). 
Therefore, a modeling editor by Bär et al. (2021) was developed and used within 
the project. During the development of the editor, special attention was paid to a 
user-friendly and simple application in order to enable modeling even for users 
without prior qualifications in the field of simulation. The editor generates a stan-
dardized XML-based configuration file for a subsequent simulation environment, 
which contains all required simulation-relevant parameters and information about 
the model structure. The parameters have to be entered manually in the modeling 
editor. Numerous auxiliary functions support the user, which simplify and accelerate 
the modeling process. The modeling approach implements existing standardizations, 
such as ANSI/ISA S88. The models consists of a model for the physical representation 
and illustration of plants, a process model for the representation of batch production 
processes by an article model, and a production plan model. The modeling depth of 
the editor goes down to the machine level (e.g., filling machine) and is mainly related 
to the scope of the required parameters as well as the complexity and accuracy of the 
models. The article model enables the modeling of different filling articles, which 
can be produced on the so-called process cells of the factory model. Each machine 
can be parameterized in terms of its parameters describing consumption and perfor-
mance, but also in terms of the type of container as well as the packaging ratios.
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The production plan model describes the production to be processed in the simu-
lation. It includes a shift schedule to define production and non-production times, 
such as a weekend when no production is planned. Furthermore, a sequence plan is 
defined, which determines the sequence of items and quantities to be produced. In 
a setup matrix, the required changeover and cleaning times that are needed between 
the articles of the sequence model are defined. 

All simulation studies were carried out using the “PacSi” simulation environment, 
which was developed by SimPlan AG, Dresden, Germany, as an industry-specific 
simulation system for processing and packaging plants. The software uses a discrete 
time approach as the simulation method. The model creation within the software 
is based on building blocks that differ fundamentally in functionality, separation, 
and merging of material flows and parameter sets. Stochastic failure behavior is 
assigned to the individual elements and failure propagation is achieved by chaining 
the machines directly or via conveyors between machines. The failure behavior is 
described by varying the seed value using a random number generator that initializes 
a random number stream. Thus, these streams for MTTR and MTBF, among others, 
are regenerated according to the distribution function (negative exponential) at each 
simulation run and the times and durations of the failures are varied. Statistical 
reliability can be achieved on the one hand by long simulation durations and on the 
other hand by multiple repetitions of the experiments. 

In contrast to other approaches, the use of a special industry-specific simulation 
system features the economic and quality-assuring advantage that proven, repetitive 
procedures are effectively automated and prefabricated. Moreover, validated partial 
models are available for the representation of reality. The smallest partial model that 
can be mapped to a simulation system is called an element. These pre-programmed 
elements (e.g., machines, conveyors, storage) are archived in the form of a library 
and made available for the elementary configuration of structures of the processing 
plant. 

In the context of this use case, the simulation environment has been extended by 
numerous functions. The most important extension is the automatic generation of 
simulation models based on the XML configuration file of the modeling editor. For 
this purpose, the various specific building blocks of the modeling editor are mapped 
to the existing building blocks of the simulation environment. By using a coordinate 
system as well as the edges of the elements in the modeling editor, the topology and 
logical structure can be interpreted in the simulation environment. When the simu-
lation model is created, the parameter sets of all units are loaded from the configu-
ration file and parametrize the simulation model. A special feature is the integration 
of a production schedule, comprising the shift schedule, the sequence of different 
items, and the changeover matrix. This is mainly solved by sources, i.e., elements in 
which material is produced in the simulation, by storing the non-production times 
as well as recording the times between articles and their specific article number. An 
indexing allows an element-specific parameter change and enables an article-specific 
simulation within the production plan. Another special feature is the definition of 
non-production times by the shift model, as the newly implemented off-consumption 
level (OL) is active during this time. The consumptions in the production times are
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described by the respective operating state. The simulation results generated every 
second are stored in an SQLite database. 

In the PacSi simulation system, a parameter mask (Fig. 6.14) can be used to specify 
the respective consumption values (Table 6.3), determined from the consumption 
measurements for each consumption medium for the defined operating states. In 
addition to the constant basic consumption, a linear consumption behavior can be 
defined for each consumer for the state of normal operation (CL) of the machine. This 
takes into account that machines often do not operate continuously at the respective 
set output due to interlinking influences (e.g., reduced feed capacity) or speed controls 
depending on upstream and downstream buffers. This means that the fluctuating 
output of the machine during normal operation can also be taken into account in the 
energy and media consumption simulation in such a way that a linear dependence of 
the consumption in relation to the output is simulated close to reality.

6.4.3.3 Results 

Two different time periods are available for the validation of this use case. Vali-
dation Period 1 covers the electrical energy demand of the aggregates, simulating 
an extensive production schedule with production-free periods such as weekends. 
Validation Period 2 includes the full energy and media requirements of the beverage 
bottling line’s aggregates. Here, a shorter period with only two items is investigated. 
The values describing the failure behavior of the machines were determined specifi-
cally for the corresponding period. The real data recorded by the measurement data 
acquisition system of the production schedule were converted into the data structure 
described above, and the simulation-relevant parameters were determined automati-
cally by running the evaluation software programmed in the project. This resulted in 
a total of approximately 1,250 parameters for all five articles. The correct operating 
status messages of the individual machines were randomly checked during opera-
tion. The changeover times of the plant between the individual articles due to any 
necessary rebuilds or cleaning were taken from the real data during the validation 
periods. 

The beverage bottling plant investigated in this use case was modeled in its entirety 
with all material flows and parameters in the editor described (Fig. 6.15). The main 
material flow (thick arrows) starts at the main source at the top left and runs clockwise 
to the sink at the bottom left. The two secondary flows (thin arrows) for pallets and 
boxes are on the left and in the middle, respectively. The items produced in the 
validation periods were each modeled with item-specific parameters.

The present model also includes article-specific and container-specific parame-
ters. The changeover times were transferred to a setup matrix in order to define the 
downtimes between the individual articles. The shift times for the validation period 
could be determined from the real data (non-production from Saturday 08:30 to 
Monday 07:00) and were also parameterized in the modeling editor. 

In Period 1, the focus of the investigation was on electrical energy consumption 
and the complex production schedule. For this purpose, the data for a production
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Fig. 6.14 Input mask for the parameters for simulating the energy and media consumption for the 
filling line (screenshot)

period covering four articles including a production-free weekend included in the 
recording period were recorded. Here, the filling and packaging of the individual 
articles differed in their total electricity requirements. The production quantities of 
all articles in the simulation show a deviation of less than 0.1% compared to the 
real production counter of the filling machine. The production times of Article 1 and 
Article 2 in the simulation are in a range of about 6–8% compared to the determined 
real times. Article 3 shows a deviation of approximately 4.5%. Article 4 shows 
a total deviation of 11.2%, i.e., accelerated production within the simulation. The 
bottle washer, crate conveyors, and mixer could be clearly identified as the main 
consumers of electrical energy in the simulation. They accounted for about 70% of 
the total electrical energy consumed and consistently showed a very small percentage
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Fig. 6.15 Screenshot of the model in the editor

deviation from the measured data. The bottom 50% of the units accounted for only 
12.3% of the total electrical energy. Over the entire period, a percentage deviation 
between the measured data and the simulation of 0.33% could be determined for the 
electrical energy demand of the entire plant. During the article-specific validation, it 
was noticed that aggregates such as the filling machine, the pallet conveyor, and the 
depalletizer individually showed relatively high deviations compared to the measured 
data. Larger deviations in the simulation compared to the measured data, particularly 
for Article 4 as shown above, are due to a long downtime at the beginning of the 
filling of the article, which can be explained by the fault messages in the measured 
data. Since long downtimes occur only very rarely due to the negative exponential 
disturbance behavior distribution and were obviously not generated in the simulation 
run by chance in the measured length, the simulated production runs faster and 
reaches the planned production quantity earlier. The simulated consumption of CO2 

within Period 1 showed a deviation of about +5% compared to the measured value. 
The water consumption of the bottle washer, which is the only machine with water 
consumption in the plant, showed an overall deviation of −11% compared to the 
measured values. 

Period 2 was primarily used to validate the compressed air and thermal energy 
consumption. The simulation parameters determined here were also used in Period 
1. The production quantities of the two articles filled in this period (Article 4 and 
Article 5) show a deviation of less than 0.1% compared to the real production 
counter. The production times of the two articles have a small deviation of about 
−3 to  −3.5% compared to the production times required in reality. For the electrical 
energy consumption in Period 2, an overall good agreement was achieved with a
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percentage deviation of only 0.14% compared to the measurement results, since the 
bottle washing machine, mixer, and crate conveyor, which consume by far the largest 
part in this recording period, show only a small deviation of about 3%. Devices such 
as the depalletizer and the palletizer as well as the container conveyor show the 
largest deviations. The labeler, crate packer, filler, and empty bottle inspector, which 
are the four largest consumers of compressed air, account for about 70% of the total 
demand. The small deviations between the simulated and measured data of these 
devices lead to a small overall deviation of the plant’s total demand (0.06%). There 
are larger deviations for units such as the decapper, the cycle-based depalletizers and 
palletizers, and the product heater. Due to the small share of the total consumption 
of these aggregates, these deviations are not decisive for a good estimation of the 
total consumption. A comparison of the CO2 consumption values is not meaningful 
in this period, since CO2 was only required for one article. The values of the heat 
energy demand deviate overall by +13.61% and the values of the water consumption 
by +6.14%. These relatively large deviations mainly result from the relatively short 
validation period. 

6.4.3.4 Lessons Learn 

An approach to modeling, automatic simulation model generation, and simulation 
workflows were presented to provide quick and easy forecasts of energy and media 
requirements for beverage bottling plants, especially for SMEs. This can be an 
opportunity for SMEs to achieve more-sustainable production, made possible by 
a modeling approach implemented in a user-friendly editor. In combination with a 
standardized data structure and, thus, data format, and associated evaluation soft-
ware, simulation-relevant parameters such as consumption and failure behavior data 
can be determined automatically. However, this requires a sufficiently large database 
for statistical significance. The approach selected and described in the use case was 
applied to a concrete beverage bottling plant with a production sequence of different 
articles, for which a detailed production plan was additionally modeled. Based on 
an XML-based configuration file, the simulation model was generated automati-
cally, which again means a recognizable time saving compared to manual model 
generation. 

6.5 Conclusions 

In this chapter, the use of computer simulation has been elaborated for the analysis 
and evaluation of energy aspects that are related to systems dealing with perish-
able items. The production, storage, processing, and distribution of perishables is 
characterized by a high degree of complexity, since these goods feature unique 
temporal, operational, and spatial constraints such as limited shelf life or special 
cooling requirements. Moreover, they are influenced by uncertain environmental
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conditions (e.g., weather, natural disasters) and strong fluctuations in demand (e.g., 
due to seasonality), which additionally impair planning and forecasting within this 
domain. Hence, to study perishables and their operational systems, scholars and prac-
titioners require flexible, adaptive, sophisticated, and dynamic methodologies that 
are able to capture such interdependent relationships in a holistic manner. Computer 
simulation can effectively be employed to design, analyze and evaluate systems that 
are related to perishable items. 

To position the simulation methodology as eligible and efficient assessment instru-
ment for energy aspects of perishables, first the status quo and background of energy-
related simulation research have been discussed, demonstrating its growing popu-
larity and usefulness in scientific research. Subsequently, common performance indi-
cators in simulation-based perishables research have been elaborated to provide guid-
ance for future research in related industry sectors. Finally, the potential scope and 
applicability of energy simulation modeling was outlined by means of three real-
world use cases. The first case evaluates energy consumption as well as waste, air 
pollutant, and ethene emission outputs of a juice production system in Sweden, while 
the second case outlines the use of simulation to predict food loss and waste levels 
in regional strawberry supply chains in Austria. The third case employs an industry-
specific simulation tool to assess the media consumption of a beverage bottling 
plant in Germany. Based on different simulation techniques such as discrete time 
simulation and DES, these applications illustrate the innate capability of simulation 
modeling to reliably evaluate complex perishable systems. Additionally, they high-
light the multifariousness as to which simulation methods can be employed within 
the perishables domain. 

As presented in Sect. 6.2, simulation-based research of energy aspects related 
to perishable products is multilayered and diverse. Energy-related data on energy 
and media consumption can both be used as input data to specify operating condi-
tions and as output data to evaluate the energy performance of a given system. Air 
pollutant emissions and food waste exclusively serve as output for the evaluation of 
the energy performance of supply chains and production systems for perishables. 
Thereby, the choice of modeling and simulation approaches primarily depends on 
the given system and problem domain. While discrete simulation techniques such 
as discrete time and discrete event simulation are very common when it comes to 
model the energy performance of production systems, to systemize inventory plan-
ning or management, or to optimize production planning and scheduling, an ABM 
paradigm coupled with a discrete time advancing mechanism can be particularly 
useful to assess perishables-related energy concerns that directly relate to customer 
demand or other properties that are based on collective behaviors and communication 
networks. Hybrid simulation approaches are very flexible and can be adapted to a 
multitude of different systems and problems, which may help researchers to develop 
tailored solutions for highly contextualized and specific questions. Finally, due to 
the fact that computer simulation can quickly become computationally intensive, 
the selection of an appropriate modeling and simulation technique also entails the 
evaluation of the individual research setting. In this regard, the use case in Sect. 6.4.3 
has shown that a discrete time approach can both be technically efficient as well as
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conceptually comprehensive, thus allowing to evaluate the energy performance of 
large production systems in a constructive way. 
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Chapter 7 

Renewables 

Cedric Schultz, Martin Rösch, and Lukas Bank 

Abstract In order to reduce greenhouse gas emissions and energy costs, renewable 

energy sources are of growing importance for manufacturing systems. This chapter 

gives an outline of different renewables, the complexities that arise from their use, and 

explains how simulation studies can be applied to address the interactions between 

manufacturing systems and renewables. To give examples of the challenges of inte-

grating renewables in manufacturing, two applications are presented for simulation 

in the design and evaluation of manufacturing control strategies under constraints of 

renewable energy sources. The simulation models include several forms of renew-

able energy sources, manufacturing resources as well as an energy storage. In these 

applications, the simulation serves two different purposes. In the first study, the simu-

lation is used to generate training data for an AI algorithm based on multi-agent rein-

forcement learning. This algorithm is applied to a closely linked manufacturing and 

energy system in order to balance energy supply and demand. The second application 

presents how a customized energy tool for a commercial material flow simulation 

can be used to generate high-resolution load forecasts applying scenarios for order 

scheduling. Based on the simulation result, the best scheduling alternative for a given 

energy supply by renewables can be chosen.
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7.1 Introduction 

News and events of the past decades have increased customer awareness for decar-

bonization and, thereby, increased the attention of the society as well as of companies 

on CO2 reduction or even neutrality (United Nations 2021). The transformation of the 

energy systems towards renewable energy sources is seen as a key element to reduce 

greenhouse gas (GHG) emissions and inhibit anthropogenic climate change (Euro-

pean Commission 2021). In the year 2020, more than 19% of electricity consumed in 

Germany was generated by renewable energy sources. This amounts to a total of 455 

billion kWh electricity and represents an average share compared to other EU coun-

tries (Fig. 7.1) (Umweltbundesamt 2021; Eurostat 2021). In 2017, the share amounted 

to 9.9% in the U.S., to 12.8% in China, and to 17.3% worldwide (International Energy 

Agency 2021; International Energy Agency et al. 2020). 

Globally, costs for renewable energy sources have declined significantly in the 

past decade. For example, the costs for utility-scale solar power has decreased by 

85% from 2010 to 2020 and costs for wind power by roughly 50% (IRENA 2021). 

At this point, renewables can be economically competitive with fossil fuels and, 

as shown in Table 7.1, may facilitate cost savings as well as a reduction of GHG 

emissions (IRENA 2021). Nevertheless, this potential is still highly dependent on 

the individual region in question (International Energy Agency 2020) and has to be 

analyzed in detail for individual applications.

Due to the multitude of stochastic factors influencing the economic viability of 

renewables in a specific case—especially regarding the variability of energy demand 

and weather influences in a region—simulation models can be helpful and often 

necessary to determine the feasibility and potential outcome of an application of 

renewables. Such simulative evaluations can be carried out at a level that covers a 

whole economy as well as on a plant or product level (see Sect. 7.3). 

There is a multitude of technologies available for renewable power generation. 

But in general, discussions are focused on either hydroelectric power, wind power, 

solar power, or biomass. Since international financing for renewables in developing

Fig. 7.1 Share of renewable 

energy in final energy 

consumption 

(Umweltbundesamt 2021; 

Eurostat 2021; International 

Energy Agency 2021; 

International Energy Agency 

et al. 2020) 
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Table 7.1 Potential annual savings and CO2 emissions reductions by replacement of coal with 

solar and wind power (IRENA 2021) 

Coal capacity with higher 

operating costs than new 

solar and wind 

Annual saving from replacing coal 

with new solar and wind 

Annual CO2 

emission 

reductions 

(GW) Including 

integration costs 

(GW) 

(USD billion/year) (Mto CO2/ 

year) 

Germany 28 28 3.3 99 

United 

States 

188 149 5.6 332 

World 1137 810 32 2973

Fig. 7.2 Characterization of 

renewables 

countries has been increasing continuously, a further increase of the share of renew-

ables—especially solar power—can be expected worldwide (United Nations 2019). 

As shown in Fig. 7.2, these energy sources differ in the way they supply energy and 

in their application in the energy grid. 

7.2 Scope and Objectives 

Hydroelectric power plants are typically large in scale and, therefore, mainly used on 

a national or regional level of the energy grid. The waterflow providing the energy can 

be readily controlled and, thus, predicted. Wind power is generated by wind turbines. 

These turbines are also most economical in larger scales. While local applications 

exist, the focus of wind power is seen on a regional level. Due to the stochastic 

nature of wind, power generation of wind turbines fluctuates significantly over time
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(Kaltschmitt et al. 2020; Konstantin 2013). Solar power can be collected by photo-

voltaics on a wide range of scale including regional solar farms as well as photovoltaic 

(PV) installations for individual buildings on a local level. Power generation by PV 

shows a characteristic curvature over the course of a day, but predictability of the 

actual amount of power generated is limited (Kneiske and Hoffmann 2014). Biomass 

power plants essentially burn regrowing and ideally sustainably managed biomass, 

such as wood pallets, farm waste, etc., to power steam generators and turbines. Tech-

nically, the process is scalable and can be used on a local level. However, larger 

plants tend to be more efficient. The turbines are easily controllable and the amount 

of power, therefore, predictable (Konstantin 2013). 

Manufacturing companies may be motivated to consider renewables for two main 

reasons: carbon neutrality and energy costs. GHG emissions can be avoided when 

renewable energy sources are used and, therefore, the carbon footprint of produced 

goods can be decreased. This reduction can be achieved either on a balance sheet by 

buying an increased share of energy produced by renewables on a national level 

or by directly producing energy locally through renewables (Kneiske and Hoff-

mann 2014). Currently, the European Commission is working on new Sustainability 

Reporting Standards (ESRS), which define how corporations have to account their 

carbon footprint and GHG emissions (European Financial Reporting Advisory Group 

2022). 

Energy costs may also be influenced by renewables on a national and on a local 

level. Given the volatile characteristics of some renewables, the growing share of 

these energy sources results in increasing effort to stabilize energy grids and balance 

energy supply and demand on a national scale. Consequently, time-of-use tariffs 

and peak-load management may be even more relevant in future and incentivize 

companies to focus their energy demand on off-peak hours. In the future, energy 

storages could also potentially be used for grid stabilization (International Energy 

Agency 2020). Additionally, companies may use renewables themselves locally to 

cover a part of their electricity demand. As some technologies (e.g., photovoltaics) 

have reached grid parity, i.e., they can produce electricity at costs lower than that of 

grid electricity, companies may directly reduce energy costs this way. 

Whether renewables are applied to reduce carbon footprint or energy costs 

(Table 7.2), the result is that electric energy is no longer viewed as an after-the-

fact cost factor, but as time-dependent and limited resource whose use must be 

planned carefully. It might, therefore, be necessary to assess, how much energy 

from which energy sources is used during stages of manufacturing over the course 

of time. Production might even be changed due to time- or load-based incentives. 

Additionally, employing conversion factors to translate usage of electricity into emis-

sions of GHG, simulation can evaluate the overall carbon footprint of produced 

goods. Because of the interrelations between manufacturing and energy systems and 

the partially time-dependent factors of energy supply, simulation is a well-suited 

approach for this kind of assessments.
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Table 7.2 Scope of application for renewable energy 

Scope Nationally Locally 

Carbon footprint Balance sheet (out of scope) Onsite generation through renewables 

Energy costs Incentives (time-of-use, load 

management) 

Onsite generation through renewables 

7.3 KPIs and Assertions from Simulation 

Interactions between renewable energies and a production or logistic system are often 

complex because of the interdependencies among material flow, energy supply, and 

the energy demand by individual electric consumers. Therefore, simulation models 

have been proposed and used for many different applications including—but not 

limited—to the following categories: 

Microeconomic sustainability metrics are applied for the sustainability evalua-

tion of entire energy systems, economies, or industries. Studies within this category 

often involve large-scale problems of how the adoption of certain energy policies 

or implementation of renewable energies might affect energy supply and costs, 

economic output, and GHG emissions of entire regions or countries, often using 

system dynamics approaches. Examples can be found in Mazhari et al. (2011), Jain 

et al. (2012), Robalino-Lopez et al. (2014), Shih and Tseng (2014), Zahraee et al. 

(2016), and Kelly et al. (2019). 

Operational sustainability metrics are used to evaluate the sustainability of certain 

manufacturing systems, products, or technologies. On a smaller scale, simulation 

studies are carried out to assess the impact of renewable energies on specific produc-

tion environment. Typical problems examine how an increased share of renew-

ables influences the overall GHG emission, manufacturing costs and performance 

throughput at an individual manufacturing site or for an individual product. Examples 

can be found in Roedger et al. (2021) and Materi et al. (2021). 

The sustainability of energy supply chains is measured to evaluate renewables 

or the renewable energy supply chain. Within this application, simulation models 

are used to determine, how sustainable and economically viable renewable energy 

sources are over the long term. This can include all steps of energy conversion and 

transmission between the source and the consumer (Energy Supply Chain). In this 

context, the total reduction or prevention of GHG emissions as well as the overall 

life cycle cost (LCC) are important KPIs. Approaches might utilize Monte Carlo 

Simulation (Jeon and Shih 2014) or System Dynamics (Saavedra et al. 2018). 

The design of energy supply systems is in the focus of planning energy systems and 

distributed energy supply. A significant share of simulation studies are focused on the 

optimal planning and dimensioning of the energy supply for a region or an individual 

manufacturing site. Problems often include renewables with their volatile power 

generation characteristic, multiple consumers with an assumed energy demand, as 

well as conventional energy sources. Typically, KPIs such as the overall system costs, 

the levelized cost of energy (LCOE), the utilization of renewable sources, the loss



184 C. Schultz et al.

of load probability (LLP) and the overall GHG emissions are studied. Examples are 

found in Hollmann (2006), Sanders et al. (2012,) Taboada et al. (2012), Reddi et al. 

(2013), Binbin et al. (2017), Thornton et al. (2018), Woltmann et al. (2018), Schulze 

et al. (2019), Tongdan et al. (2020), and Oladeji et al. (2021). 

Energy-conscious manufacturing operations are targeted for the design and vali-

dation of energy and manufacturing planning as well as related control strategies and 

algorithms. Typically, for these applications a production system including multiple 

machines as electric consumers is modeled in combination with the energy supply 

by renewable sources. Targets are usually the optimization of manufacturing costs 

including costs for electricity or the alignment of production orders and, therefore, 

energy demand with constrained energy supply while maintaining throughput and 

utilization of the manufacturing system. In some cases, additional consumers (e.g., 

building installations, ventilation, etc.) are also included. Examples are found in 

Schultz et al. (2015), Weinert and Mose (2016), Beier et al. (2016), and Beier (2017). 

In the following sections, simulative approaches to design and validate control 

strategies that align manufacturing with renewable energy supply will be further 

explored. Additional simulative applications can be found in Moon (2016). 

7.4 Data Requirements 

Data requirements for material flow simulation of renewables are highly dependent 

on the individual scope and application of the model. In many cases, the focus of 

the model is to find an optimum between production needs, i.e., preferably contin-

uous and unlimited energy availability, and a discontinuous or even intermittent 

energy supply by renewables. As such, general requirements for the description of 

the production system apply (see Chap. 2). 

In addition to the production system, energy supply and demand need to be 

modeled. Depending on the scope of the application, the model may include different 

electrical consumers such as manufacturing resources, building installations, or even 

electric vehicles within the production system. Their energy demand is often repre-

sented by a state-based modeling approach (Thiede 2012). Thereby, each relevant 

state of a consumer (e.g., “Off”, “Idle”, or “Producing”) is characterized by a specific 

energy demand. This energy demand is most often modeled as a constant average 

value in kW, but may also be modeled as more complex load profiles per state 

(Weinert et al. 2011). 

Depending on the scope of the application (see Table 7.2), the energy supply side 

includes renewables directly or indirectly through incentive-based pricing. When 

local power generation by renewables is studied, these energy sources are typically 

modeled as time series representing their power feed over the course of a shift or a day. 

These time series are either based on historic data collected on site or on reference 

data for similar installations of renewables (Beier 2017). In any case, volatility needs 

to be taken into account (Fig. 7.2).
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Renewables that are integrated into the electric grid on a national level only have 

an indirect effect on individual consumers. Due to their volatility, there might be 

times with a high supply of cheap electricity (actually straining the grid) and times 

where supply is unexpectedly low. These circumstances are typically addressed and 

modeled by time-based pricing of electricity. Therefore, the time series required 

for the simulation specify the costs of electricity over the course of the day instead 

of actual power generation. In addition—and independent of whether renewables 

are considered or not—there are usually thresholds for maximum peak loads in the 

contracts with energy providers. Surpassing these peak loads leads to sharp increases 

in yearly energy costs. 

If the impact of renewables on the CO2 footprint of the company, production or 

product is studied, this can also be represented by a CO2 coefficient per kWh of the 

local energy supply as well as of the energy supplied by the grid. 

7.5 Challenges for the Simulation Models 

Even though specific challenges in simulating renewables depend on the individual 

application, common problems to be addressed in the model often include the 

volatility and time resolution of renewable energy sources. As described in Sect. 7.1, 

wind and solar power show volatile behavior making prognoses based on historical 

data challenging (Tao et al. 2010; Xu et al.  2012; Gonzalez Ordiano et al. 2017; 

Oneto et al. 2018). 

If renewables are modeled on a larger timescale of weeks, months, or longer, for 

example if the CO2 footprint of production is to be studied, this volatility can be 

addressed by averaging. However, if the application is based on a shorter timescale 

of hours or minutes, significant uncertainty and forecast error have to be considered. 

The same is true for the demand side of the model, which has to match the supply 

side. Applications in the field of production planning and control typically ask for 

high resolution data, i.e., minutes, of energy demand depending on operating states of 

consumers, products, or manufacturing orders. Load peaks are especially demanding, 

since they usually result from a superposition of different energy consumers within 

seconds or minutes, and continuous energy profiles might be required for proper 

modeling. For many practical applications these data are not readily available and 

obtaining demand data for all consumers might proof challenging, since large-scale 

energy measurement has not become industry standard today. Even if data for energy 

demand are collected in manufacturing, they are often handled in systems and 

databases separate from the manufacturing operation itself and need to be linked 

to manufacturing jobs. 

When integrating energy into a material flow simulation, the challenges are the 

different requirements for the simulation. A joint consideration can only be achieved 

with substantial effort (Schlegel et al. 2013). Material flows in discrete manufacturing 

can be well represented by discrete event simulation, but this technology is only 

suitable to a limited extent for representing continuous energy flows. To counter this
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Fig. 7.3 Paradigms for a joint simulation of material and energy flow 

problem, the three essential paradigms shown in Fig. 7.3 have been developed (Thiede 

2012). These paradigms were already introduced as part of the morphological box in 

Sect. 1.2.2 regarding the timing and architectural approach of the energy evaluation. 

Subsequent energy simulation This approach is carrying out the material flow simu-

lation without considering energy. Subsequently, the energy is analyzed in separate 

simulation model or other tool based on the result of the material flow simulation. 

Coupled energy simulation This paradigm is coupling a material flow simulation 

using a discrete event simulation with a continuous simulation tool for the represen-

tation of the energy flows in order to achieve a simultaneous consideration of the 

interactions and to use the appropriate tool for the representation in each case. An 

example can be found in Junge (2007). 

Integrated energy simulation The energy flow is integrated in the material flow 

simulation, e.g., by discretizing the energy flow, to achieve an integrated view 

between material and energy flows. 

The first paradigm can be implemented with relatively little effort and is suitable 

if the effects of the material flow on the energy flows are to be considered and no 

adjustments of the material flow based on energy variables are to take place. The 

second paradigm uses corresponding specialized applications for both energy and 

material flow. However, the coupling is complex, as two models have to be created and 

the corresponding know-how has to be available. The third paradigm uses material 

flow simulation and integrates an energy flow consideration. The energy flow must be 

discretized for a discrete event simulation. Therefore, accuracy is lost in the energy 

consideration. The choice of the paradigm, thus, depends on the question that is to 

be answered by the simulation. A consideration of the individual advantages and 

disadvantages has to be considered individually.
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7.6 Applications 

For the better understanding of the preconditions and potential outcomes of simu-

lation and to illustrate the discussion of the chances and challenges of simulation 

technology, this section introduces two use cases from different perspectives. The 

first case (Sect. 7.6.1) studies the cost saving by avoiding peak loads in the public 

power supply of a manufacturing system by exploiting batteries and renewable energy 

sources. The driving idea is that with a smart control strategy, the production could 

be levelled in its power consumption, and peaks of the volatile renewable energy 

efficiently used. The second use case (Sect. 7.6.2) is a medium-sized manufacturer 

of bevel gears and related parts, which during their production undergo hot forming 

and thermal post-treatment. The high power demand is partially satisfied by a PV 

system, and suitable strategies are sought to exploit the volatile energy input from the 

PV as completely as possible in the production, and also to schedule the consump-

tion of electricity from the grid at time windows where the fluctuating prices are low. 

Simulation helps to identify the right measures, especially when disturbances force 

to change the original scheduling. 

7.6.1 Integration of Self-sufficient Energy Supply 

in Manufacturing 

This section describes the implementation and usage of a simulation model from a 

medium-sized metal working company. The roughly 120 employees at this produc-

tion site focus mainly on the precision finishing of metal parts for the automo-

tive sector as well as tool manufacturing. Hence, the manufacturing system mainly 

consists of several production resources on the energy demand side and focuses on 

the integration of power supply based on renewable energy sources and a battery 

system. The resulting simulation model is applied to gather data and scenarios to 

train a control system based on artificial intelligence, which is finally able to control 

the complex system in a holistic and efficient way. 

7.6.1.1 Initial Situation and Goals of the Study 

Controlling a manufacturing system is a complex control task. Regarding the inte-

gration of renewable energy sources, their power generation is volatile and only 

partly controllable. Thus, for an optimal use of this energy, the electricity demand of 

the manufacturing system also needs to be aligned with the availability. This results 

in an even more complex control problem, which entails a need of new and more 

powerful algorithms, especially as stochastic events require a highly reactive system. 

Recent breakthroughs in the field of artificial intelligence (AI) open new possibil-

ities to tackle such challenging control tasks. However, for training such an AI, in
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general a huge amount of training data is required, which often cannot be acquired in 

a real-world system. Instead, a simulation can be used. Eventually, the overall goal 

is to minimize both, energy and manufacturing costs in the same way. 

In this context, the mentioned AI is applied for an energy-oriented produc-

tion control, implemented for a medium-sized company (Roesch et al. 2020). Its 

production site consists of a complex energy system with the following elements 

(Fig. 7.4):

• Battery storage (BS)
• Combined heat and power plant (CHP)
• Photovoltaics system (PV)
• Public grid connection (PGC) 

On the electricity consumer side, there are mainly five production resources for 

metal working, who cause together roughly 60% of the total electricity consumption. 

Defined manufacturing jobs of several types with specific durations are assigned to 

these resources, resulting in a discrete manufacturing system. Between two jobs 

of different types, a machine setup is required. The other 40% of electricity are 

consumed by various smaller devices and machines as well as elements of building 

services. 

On the energy side, it is highly attractive to consume the self-generated electricity 

from PV and CHP, as the specific costs especially from PV are lower than electricity 

supplied from the public grid. In addition, high peak loads from the public grid 

should be avoided. The reason is, that in the German electricity grid, the average 

load in 15-min time intervals is decisive for the generally expensive charges for peak 

power consumption. On the production side, jobs should be finished in time. The 

number of job types to be machined is predefined by the previous capacity planning 

process, which is conducted by a custom planning tool using a heuristic optimization 

algorithm based on simulated annealing (van Laarhoven and Aarts 1992) and should 

be out of scope for this book. The electricity and production system is brought 

together, as the manufacturing resources are consuming the energy and, thus, have 

the potential to contribute to minimizing energy costs by an intelligent schedule.

Fig. 7.4 Schematic system overview for the metal working company 
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Under these circumstances, the objective is to create a simulation model that 

displays the logic and interdependencies of both, the production and energy system 

to generate training data for the AI. Based on this, the latter shall be applied to 

provide a suitable and holistic short-term control strategy to minimize electricity 

and manufacturing costs in the same procedure. Therefore, it is important for the 

simulation to evaluate the quality of control actions taken by the AI system, creating 

an objective function that allows for assessing the quality of a control strategy. 

7.6.1.2 Procedure of the Simulation Project 

The process of creating the simulation model was inspired by the procedure described 

in the VDI guideline for simulation of systems in logistics, material handling 

and production (Verein Deutscher Ingenieure 2014). In the following, the main 

specifications and tools are summarized. 

In order to understand the dependencies and cohesion of the involved system 

elements, a detailed analysis of the real-world system was made. Besides the produc-

tion data—like the required energy, time, and resources for discrete manufacturing 

tasks—also the overall energy consumption data were gathered. As some detailed 

energy data were not recorded by the installed energy management system, additional 

electricity measurements were arranged temporarily. During the following modeling 

step, the system model has been created based on a modular concept and the data 

were preprocessed and prepared. This was performed by a newly programmed time-

step-based simulation environment using Python and C, inducing a bigger effort to 

create all models from scratch compared to using an existing simulation program. 

However, as computational performance is essential for using a model for training 

an AI, this approach has been selected. Because the open source library RLlib (RAY 

2022) was applied for the AI part, the model could be easily integrated. 

After iterative verification, beginning on single element level and advancing to the 

entire system, the simulation results were evaluated as well as parameters adjusted 

and defined. Thereby, the existing real-world data regarding energy consumption and 

production plan of the entire system were used. Finally, the simulation has been inte-

grated in the AI training pipeline. Thereby, the simulation can be executed providing 

an environment where the AI control can interact and learn on the experience it is 

gathering during its training. To assess the quality of the taken control actions, an 

additional evaluation function is created that depicts the resulting energy costs and 

quantifies the attainment of general logistic objectives of the production system. As 

an AI algorithm, a multi-agent reinforcement learning approach was applied (Gabel 

2009). The resulting architecture is outlined in Fig. 7.5.

After presenting the procedure on a very high level, this section provides a 

deeper understanding of the major characteristics of the simulation model, especially 

regarding the linkage of energy and production system. 

Discretization In order to limit the computational effort, the given model is 

discretized over time. Although the energy flow is a continuous process, the energy



190 C. Schultz et al.

Fig. 7.5 System architecture

consumption is not modeled by a continuous function, but a discrete time simulation 

is applied. This concludes in the approach to choose time steps as long as possible 

and as short as necessary. Regarding the overall goals of the given study, a major 

time constraint is the avoidance of peak loads, which are accumulated in intervals 

with a length of 15 min (see Sect. 7.6.1.1). Therefore, the AI-based controller needs 

to react within a 15-min interval to prevent conceivable peaks. Besides, the length of 

a single time step should be a common denominator of the relevant billing interval of 

15 min. From the production side, the jobs assigned to the manufacturing resources 

take between 20 and 40 min. Consequently, three minutes were defined as the length 

of a time step, resulting in each 15-min interval consisting of five consecutive time 

steps. Doing so, the machining time of jobs had also to be rounded to a multiplicative 

of three, resulting in a duration, e.g., of 21 instead of 20 min. This leads to some 

blur of the simulation model. This is, however, acceptable in favor of computational 

expense and performance of the system. 

Focus and system boundaries To further reduce the system complexity and focus 

on the most relevant aspects, some important measurements are taken, which are 

briefly explained in the following. 

With respect to the production system, the simulation focus was put on the 

resources with the highest energy consumption. Therefore, only the mentioned five 

manufacturing resources are modeled in detail, which in total cause roughly 60% 

of the total energy consumption. As the rest of the energy demand is caused by 

several smaller consumers with poor data quality and less direct dependence on the 

production schedule, the analysis concluded in not displaying these parts in detail 

(Fig. 7.6). The consumption of these consumers was rather aggregated and modeled 

as not controllable, regarding it as an unswayable input. On a technical level, this 

input consists of a time series based on historical data of the real system.



7 Renewables 191

Fig. 7.6 Overview modeling concept of the production system 

Another simplification was made for the energy consumption of jobs machined in 

the production resources. In the given production system, there is a limited number 

of job types, with each job of a type having the same energy consumption and 

machining time. In fact, the energy demand is fluctuating during the machining 

process. However, cumulated to a longer time interval of several minutes, the 

consumption is roughly constant during the whole machining process. Thus, for 

simplification the jobs are modeled with a constant power consumption. However, 

this leads to a decent blur regarding the short-term fluctuation of energy demand. 

In analogy to the technical side, the energy demand and availability are cumulated 

within a time interval of three minutes anyway, as this seems acceptable. Due to this 

averaging within a time interval, the impact and risk of, e.g., very short but high 

demand peaks can be neglected. 

The simulation system is furthermore based on various system elements, each 

representing an energy consumer or generator. Thus, every manufacturing resource 

represents a consumer, whereas CHP, PV, and PGC are the three generators. The BS 

plays a special role, as this system element can act as both consumer and generator. 

Connecting material and energy flow One major challenge of the simulation study 

results from the two flows of energy and material, which present different physical 

dimensions, but at the same time are strongly connected. On the part of the energy 

system elements (e.g., PV, CHP, and BS), there is no direct linkage to the material 

flow and manufacturing objective. On the part of the production resources, however, 

a job entails a specific machining time and energy consumption in the same way. 

Consequently, both aspects have to be modeled. For implementation, both parts were 

programmed in a modular way using Python, which leads to the benefits mentioned 

above regarding the computational performance. 

Having a closer look at the modelling of the energy system, the PV and CHP are 

modeled quite differently. The maximum power in every time step of a PV is defined
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by the current weather conditions. Based on this, the electricity output can only be 

adjusted to less power but at the same time unchanged costs. Therefore, reducing 

the generation power is only reasonable when the PV power cannot be consumed, 

stored, or fed into the public grid. For CHP, in contrast, the costs are proportionally 

increasing with the generated power, as fuel needs to be consumed. Therefore, the 

CHP can be flexibly controlled and turned off completely, in case there is enough 

electricity available. As the efficiency of the CHP is in general depending on the 

current operational point, it is often not economically efficient to operate a CHP under 

a defined power limit, leading to another boundary of the control strategy. The BS as 

the third module of the energy system has a characteristic capacity rate (also known as 

C-rate) to define the maximum charging and discharging power. Regarding the costs, 

the battery degradation defines the resulting live span and economical depreciation 

of the system. To take this into account in the model, a battery degradation is applied 

online as part of the simulation, to determine the resulting costs of every charging or 

discharging action. 

To model and assess the electricity costs, all generated and consumed electricity 

of each system element is cumulated in an electricity pool with an internal balance 

sheet for consumed and generated electricity, which is indicated in Fig. 7.7. As the  

billing interval for the considered electricity pool is 15 min, the pool was filled every 

time step (3 min). However, the balance sheet was interpreted and then cleared after 

every 15 min. In addition, the generated energy is assigned to specific costs, based 

on its origin. For example, the electricity generated by CHP has other costs than the 

consumed power from the public grid. In order to display the impact of the material 

flow on the production, a synthetic cost overall function OCn(t) is created (Eq. 7.1). 

On the one hand, it consists of costs for the setup time CSn for every job n and 

additional labor force LCn in case of extra hours, and on the other hand of time-

dependent costs TCn(t) entailed by missed due dates. Eventually, the material flow 

as well as the electricity flow can be monetarily assessed, providing an objective 

function for the complex system. 

OCn(t) =
∑

TCn(t) +
∑

CSn + LCn (7.1)

Data generation and data augmentation The overall purpose of the simulation 

study is to provide a suitable environment for an AI algorithm to generate and 

aggregate training data. For the training, data of several thousand working days are 

required. This prerequisite forms a major challenge of the study, as there are no real-

world data in this extend. Consequently, the given limited data from the real-world 

production site had to be augmented, based on randomization factors for PV genera-

tion, stochastic events in the production leading to breakdowns, energy demand from 

other consumers than the modeled resources, and the composition and amount of jobs 

to be manufactured. The determination of these randomization factors is crucial for 

the success and ability for generalization of the AI algorithm. As the generated data 

should be realistic, but also provide different scenarios that did not yet occur but are 

possible in the future, stochastic models are applied. The necessary complexity of
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Fig. 7.7 Electricity pool concept

these models depends on the magnitude and number of influencing factors, which 

have an impact on the data series to be augmented. As an example, for the generation 

of PV data a simple Gaussian distribution is applied. To generate consumption data 

for the energy demand of other consumers than the modeled production resources, 

a complex neural network is trained based on several influencing factors like the set 

of jobs to be produced, the time of day, and the season. 

7.6.1.3 Results of Experiments and Evaluation 

The synthetic data generated by the simulation are used to train the AI algorithms. 

Thereby, the AI controls the strategy of every system element, defining, e.g., whether 

to charge or discharge the battery and which job to process at every production 

resource at the same time. The training process is computationally expensive. In 

this context, the simplifications and chosen discretization prove to be an important 

contribution for a computational-efficient simulation. This results in being able to 

reduce the training duration to several hours, which requires roughly 3,000 simulated 

training episodes (each episode representing one working day). After the successful 

training on the synthetic data, the AI is applied on several episodes of the real-world 

production system data for validation. Doing so, the AI algorithm proved to have 

learned a generalized strategy that provides robust and good results for controlling 

the overall system. 

After training, the AI is able to take decisions within seconds, which provides a 

highly reactive control strategy enabling fast reactions on unforeseen events. Thus, 

the whole system including manufacturing resources and the energy modules can be 

controlled in a holistic and highly efficient way. Compared to a conventional rule-

based heuristic, which provides a comparable reactivity, the trained AI algorithm 

could halve the resulting overall production costs. At the same time, the application 

of a metaheuristic optimization approach concludes that there is still potential for the
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AI to further reduce the overall costs by on third. Overall, it can be concluded that 

the simulation fulfills its required functionality. The AI algorithm can learn a robust 

strategy based on the training scenarios provided by the simulation model. 

7.6.1.4 Benefits and Lessons Learnt 

The simulation study shows that besides a simple and modular concept, the focus 

on relevant aspects as well as suitable simplifications essentially contribute to the 

efficient and successful approach. These findings are especially important in the 

context including volatile renewable energies of material and energy flow simula-

tion, as these entail an even higher complexity compared to simulation only focusing 

on controllable energy supply units. In general, regarding the great expansion of 

applications using AI, simulation is a powerful technology to generate sufficient and 

realistic training data, providing an important contribution for future breakthroughs 

and optimized control strategies for integrating renewable energy sources in an effi-

cient way. On a system level, the presented control strategy can further be extended 

on more complex setups on production side (e.g., more manufacturing resources 

and additional constraints) as well as integrating trading on the short-term electricity 

markets on the electricity side. 

7.6.2 Load Forecasting of the Self-Production Rate of Solar 

Power 

The company where this simulation study was carried out manufactures, among other 

things, bevel gears. These are installed in the chassis of vehicles. The company is a 

medium-sized enterprise that can be described as a Tier-2 supplier and has several 

plants. In the simulation study, one production area of a plant was considered, which 

is responsible for the main power demand of the site. The production area is located 

in a hall where bevel gears are produced by hot forming. In order to obtain the desired 

material properties, a heating process follows the hot forming. Energy is required 

at the hot forming machines for heating the material and for mechanical forming. 

The forming process is also followed by thermal post-treatment, which consists of 

several furnaces. The site has a photovoltaic (PV) system. The aim is to use as much 

of the electricity generated there as possible and to purchase additional electricity 

cheaply on the basis of a plan. In the event of deviations from the production plan, 

suitable strategies are to be evaluated in the simulation.
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7.6.2.1 Initial Situation and Goals of the Study 

Energy costs have a significant share in production-related costs. Today, produc-

tion and energy management tasks are usually considered separately in industrial 

applications, losing the knowledge about the connections between the production 

program and the energy demand. In processes with energy-intensive equipment, this 

can lead to problems, if, e.g., a load peak occurs due to parallel operation of this 

equipment. Load peaks have a negative impact on grid stability and are, therefore, 

subject to penalty payments. In order to avoid these payments, industrial compa-

nies sometimes resort to drastic measures and switch off plants for a short time, 

with corresponding negative effects on production. A load forecast is relevant for 

the integration of self-generation plants into factory operations to adjust consump-

tion depending on the expected generation. The goal is to consume the company’s 

own electricity as completely as possible. Accordingly, it can be useful to schedule 

consumption-intensive production processes during periods of high electricity avail-

ability. In this respect, on the one hand, appropriate planning is important. On the other 

hand, in the event of changes, appropriate measures must be developed to respond 

to these changes. Changes to the plan can arise from electricity demand, e.g., due to 

machine failure or from energy production, if production is lacking behind the expec-

tations. This is especially the case when electricity generation is weather-dependent 

renewable energy. Forecasts are of high quality only with short time horizons, but 

they do not protect against unforeseeable fluctuations in actual generation. Then, the 

fluctuations in self-generation must be adjusted either by adjusting the company’s 

own demand or by drawing from the grid. The adjustment of the energy demand 

can lead to a reduction of the output depending on the amount of load reduction and 

a corresponding decision should be secured. The balancing via the power grid can 

additionally create load peaks. 

The use case takes up this problem and shows how a load forecast is carried out 

with the help of simulation to recognize imminent load peaks and to develop suitable 

strategies through scenario analyses to prevent them before they occur. The applica-

tion of simulation is suitable in this case, especially due to the high complexity that 

arises from the simultaneous consideration of material and energy flows. In contrast to 

other simulation studies in production, plants not only have to be modeled logistically, 

but data on their performance profiles for different states are also necessary. 

The objective was to simulate a production schedule generated by the Manufac-

turing Execution System (MES) for this production area and to detect impending load 

peaks. In the event of a load peak, the simulation is able to determine alternatives 

and propose them to the production control system in order to set a load profile that 

does not cause additional costs in addition to the logistical target values. In addition 

to the consumption by the production, the grid consumption is also influenced by the 

self-generation by the photovoltaic system. If electricity is generated by the photo-

voltaic system, the production output can be increased without creating the risk of a 

load peak at the grid connection. Therefore, production must also be oriented to the 

generation forecast. The content of the simulation is shown in Fig. 7.8.
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Fig. 7.8 System overview for the bevel gear fabrication 

7.6.2.2 Procedure of the Simulation Project 

The process follows the basic description of the VDI guideline for conducting a 

simulation study. Special attention should be paid in this case to the definition of the 

system boundary. It may be necessary to integrate facilities into the simulation that— 

while having no direct influence on the material flow—are worth a consideration due 

to their energy consumption. Furthermore, the recording of energy data should be 

mentioned. In this case, the data sources were the ERP system for the master data 

of the orders, as they are represented, e.g., in SAP or other tools, such as weight, 

geometry, and material. The production plan of the planning period was taken from 

the MES developed by a medium-sized software company, which also defined the 

horizon of the simulation. In addition, historical data from production were used to 

enable modeling of the plants. The energy data came from an energy management 

system. The simulation study was implemented with the help of the discrete event 

simulation software Tecnomatix Plant Simulation and a library developed by Siemens
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that enables a detailed representation of the energy consumption of plants. The library 

is currently still under development. 

7.6.2.3 Modeling Application-Specific Aspects 

The modeling has, of course, to represent the logical flow of material on the system 

under study. In addition, further elements have to be respected that model the energy 

consumption and links it with the material flow. To establish the model, as the 

first step, the available data are analyzed to identify these relationships. In order 

to align the continuous energy model with the discrete event logistics model, it is 

discretized. The model elements are further divided into parts with different energy 

characteristics, which are modeled separately. 

Data analysis In order to gain an understanding of the relationships between produc-

tion and energy consumption and to suitably represent the corresponding relation-

ships in the simulation model, the production and energy data were analyzed. The 

aim was not only to be able to represent known product-machine combinations in the 

simulation application and then fall back on historical load curves, but to represent 

the actual causes. Regression analyses were used for the analysis, and it was possible 

to identify product characteristics that can essentially explain the subsequent power 

consumption of the machine. 

Discretization The “E-Flex Tool”, a library for Plant Simulation, is intended to 

enable the different energy states of the plants to be represented in greater detail 

than it is currently the case in Plant Simulation. The modeling of energy is currently 

represented by average power values for individual system states. For example, there 

is the operating state. Using average power values for long condition phases is not 

sufficient for forecasting a load profile, especially if load peaks are to be forecasted. 

The E-Flex tool further partitions the individual system states and also makes it 

possible to describe them as a function of different products. Thereby, the benefit of 

the E-Flex tool is that the energy states are subdivided into smaller steps during the 

discretization than before to gain a better approximation for the energy demand. This 

process is similar to integral calculus, where the area under a curve is approximated 

by subdividing simple rectangles further and further. In this way, it is possible to map 

the main factors influencing consumption. Furthermore, there is the possibility of 

scaling the operating states in order to be able to easily represent different operating 

modes of the systems (Prell et al. 2018, 2019) (Fig. 7.9).

In this application, product groups were formed that generate comparable load 

curves on the same machine due to their comparable masses and dimensions. The 

correlations between product characteristics and load were determined in previous 

data analyses. The representation of the load is still discrete, but this level of detail 

is sufficient depending on the application.
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Fig. 7.9 Energy modeling

Modeling For modeling, corresponding aspects of energy must be considered, which 

may change the design of the models. The representation of the hot forming equip-

ment will be presented as an example of this. The systems consist of two subsystems. 

In the first subsystem, the material is heated by an induction furnace. This is followed 

by forming through the press. The press has a volatile load curve due to the strokes, 

which leads to load peaks. The furnace, on the other hand, has a uniform load profile. 

To take this into account, the subsystems are each represented in the model by their 

own model modules in order to enable separate modeling of the energy requirement. 

Each subsystem in turn has a building block of the “E-Flex Tool” to describe the 

energetic profile (Fig. 7.10). 

Simulation run For the simulation runs, production plans were used that were created 

by corresponding experts. The orders included in that production plans were divided 

into product groups according to the energy consumption characteristics found in the 

data analysis. The simulation was carried out with this modified production plan in 

which the specific orders were replaced with order groups. If the simulation found 

load peaks, different load avoidance scenarios were simulated and fed back to the

Fig. 7.10 Representation of 

a hot forming machine by 

two “SingleProc” blocks and 

their respective “E-Flex 

Tool” blocks (screenshot) 
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Fig. 7.11 Qualitative 

representation of the actual 

load curve and the 

simulation-based forecasts 

production planning. The load can be adjusted by exchanging orders of different 

groups with each other, alternate the resource schedule or shifting production stops 

to different time windows. 

7.6.2.4 Results of Experiments and Evaluation 

The simulation studies made it possible to identify load peaks that would have 

inevitably occurred with the original production plan and to propose alternatives. In 

addition, the simulation was able to generate a load forecast whose forecast quality 

was good, despite the discretization. The forecast quality was measured using histor-

ical data. The deviation between the forecast and the observed power curve was 

analyzed graphically and by key figures like the root mean square error. The discrep-

ancy between forecast and actual energy consumption was between 0.01% and 2.5% 

per forecast. 

Since machine failures are not predicted in terms of time, they remain as unde-

tected deviations in the load profile. To coordinate the restarting of failed machines 

and avoid creating a load peak through the start-up test, the simulation can be used 

to define a suitable start-up time window. In order to prevent an offset between the 

forecast and the actual load profile, the simulation should be run again after a longer 

production outage. In Fig. 7.11, the observed load profile and forecasts are shown. 

The initial forecast fails as soon as the production breakdown occurs. For this 

reason, a new forecast is performed. It is clear that discretization is not able to 

perfectly match the load curve. Average load values per 15-min interval are decisive 

for the observation, and at this level of detail the forecast provides sufficient results. 

7.6.2.5 Benefits and Lessons Learnt 

Applying simulation achieves that the generation by the photovoltaic system, the 

power purchase via the grid, and the production are considered holistically. Taking 

into account the different influences, the risk of load peaks is analyzed. In case of
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imminent load peaks, measures are determined on the basis of the simulation that 

can prevent them. 

Avoiding load peaks leads to the avoidance of non-inconsiderable costs in produc-

tion and, thus, ensures the economic operation of production. As the simulation repre-

sents the production process and its energy flows in detail, further applications are 

conceivable. In the future, for example, the simulation model could be used to opti-

mise the process according to the time-variable energy prices and, thus, further reduce 

energy costs. A further development into a digital twin could also make it possible 

to deal with unforeseen events more quickly and suggest appropriate interventions 

with a short reaction time. 

7.7 Conclusions and Outlook 

Due to the need to reduce greenhouse gas emissions and limit global warming, renew-

able energy sources are and will be—even more than now—an important pillar of the 

energy supply on a local and national level. In addition to the environmental benefits, 

actual cost savings may also be realized if renewables are used. However, the multi-

tude of partially interrelated variables, such as energy demand, peak loads, weather 

effects, etc., entails a high complexity in the analysis and forecast of individual appli-

cations and their potential benefits. Therefore, simulation studies are carried out to 

address the complexity and analyze the impact of renewables on manufacturing sites, 

products, or even whole economies. The insights gained through these studies often 

include, how the total costs for electricity, the amount of GHG, or the utilization 

of manufacturing changes with varying energy supply by renewables. The need for 

such solutions will probably increase in the future due to the growing efforts for 

climate change mitigation. This trend gets an additional boost due to the current 

political situation, which pressures especially many European countries to get inde-

pendent of imported fossil fuels as quickly as possible. This leads to more complex 

energy systems for manufacturing sites, which requires more-detailed simulation and 

control. 

As has been shown, for example, in the two use cases, simulation models of 

interacting energy supply and manufacturing systems can be used not only to evaluate 

the economic (or environmental) viability of those systems, but also to develop 

and validate complex control strategies for manufacturing, renewables, and energy 

storages. These strategies can be used as tools to control actual manufacturing systems 

under constraints of renewable energy sources. A variety of similar examples can be 

found in the literature. Since the interest in energy-related studies in manufacturing 

has grown in the recent past, toolboxes have been developed to integrate energy 

modeling in simulation environments such as Plant Simulation to lower obstacles and 

make it easier to execute such studies. Additionally, an increasing share of IT tools 

for operations management, e.g., Manufacturing Execution Systems, now include 

tools to record and analyze energy consumption during manufacturing (Sauer et al. 

2016). This will make the energy-related data of the demand side needed as input
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for simulation, such as state-based energy consumption for machines, more easily 

available, thus enhancing the practicality of these simulation studies. 
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