Digital Twin in the Cloud – the results of the EU Research Project “Optimised”

- SimPlan AG
- Dirk Wortmann

Dirk Wortmann, born in 1967, finished his studies in computer science at the GKS Bad Homburg in 1988. He started his professional career in a Frankfurt engineering office and was involved in the development of simulation software and the implementation of simulation projects in the field of production and logistics. In 1992 he founded the company SimPlan together with his partner Sven Speickerman. From the founding until 2013 he had been a member of the board. From 2010 to 2018, he set up and developed SimPlan’s Chinese subsidiary in Shanghai.

Digital Twin of a building components manufacturing: The EU research project “Optimised” was started in 2015 and finished in 2018. “Optimised” stands for Operational Planning Tool Interfacing Manufacturing Integrated Simulations with Empirical Data. The primary objective was the development and pilot implementation of a manufacturing scheduling optimisation system, which uses smart sensors and big data analytics to monitor, react to and improve manufacturing performance. Three demonstrators of different industries and application focuses were developed:

- Demo 1: Alstom’s train fleet management for Virgin’s Westcoast Line in UK
- Demo 2: Production order scheduling for a large machining parts production at Goimek in Spain
- Demo 3: Planning and Optimisation of a building components manufacturing at Laing O’Rourke (LOR) in UK

The bridge to reality
About the EU Research Project "Optimised"

Objective
Partners
Scope

Demonstrator 3 – Holistic factory simulation of a building components manufacturing at Laing O’Rourke (UK)
System architecture
Digital twin in the cloud
Energy management in the simulation model
Important results and conclusions of the project
EU Research Project “Optimised”

Objective:
- To develop and demonstrate a manufacturing scheduling optimisation system that uses real-time smart sensors and big data analytics to react and improve manufacturing performance. Impact of energy management on factory planning & optimisation is specifically addressed.

Project Funding:
- €7m 100% EU-funded (EU Factory of Future call – FoF8, part of Horizon 2020)

Scope
- Components of the Optimised tool box:
 - Simulation
 - Mathematical Optimisation
 - Live factory data acquisition
 - Integration Platform (MoM = Message oriented Middleware)
 - Dashboard system

Principle:
Measure, Simulate, Optimise
EU Research Project “Optimised”

Scope

- Demonstrator 1: Alstom’s train fleet management for Virgin’s Westcoast Line in UK

- Demonstrator 2: Production order scheduling for a large machining parts production at Goimek in Spain

- Demonstrator 3: Planning and Optimisation of a building components manufacturing at Laing O’Rourke (LOR) in UK

Demo3 – Holistic factory simulation
Digital twin in the cloud
Main objectives:
- Evaluation of holistic factory performance in the near future
- Evaluation of production schedule, resp. maintenance plan
- Support staff scheduling and production order management

Digital twin in the cloud:
- Simulation of the holistic factory model
- Fully integrated in overall system architecture with SimController
- No direct interaction of users with the simulation software

Digital twin in the cloud components:
- Scheduling GUI
- HBase Service
- MoM (RabbitMQ)
- SimController
- LOR simulation model (using Plant Simulation)
- STS library
- Automatic data loading
- Providing results to MoM
Digital twin in the cloud

SimController

- Start Services with Parameter Settings
- push document to queue "Simulation.StartRequest"
- Publish State of the Simulation to queue "Simulation.Result"
- push Result to queue "Adp.Demo.Dataloader" in order to store Results to DB

SIS: Connection for socket initialisation
S2C: Connection for requests/reports simulation ➔ client
C2S: Connection for requests client ➔ simulation

Distributed system components

Optimisation
University of Nottingham

Factory Data
Laing O’Rourke
Worksop

Dashboards
Keonys Paris

Simulation
SimPlan Bremen

MoM, HBase
adp Dresden

Siemens Digital Industries Software
2019 Tecnomatix Plant Simulation Worldwide User Conference
Facts about the simulated process

- Complex production process for one-of-a-kind production
 - Consider all constraints of the production system such as dimensions and weights of products for processes like crane transports, pallet allocations etc.
 - Flexibly allocate space on generate purpose building spaces
 - Administer information flow data such as workplans

- Aspects modelled:
 - Space allocation for production line and yard area
 - Staff management
 - Operations requiring moulds/pallets
 - Energy consumption and energy-aware production control

Energy management in the simulation model

- Energy in Simulation
 - Simulate energy consumption of equipment
 - Shop-floor control respecting energy limits

- Purpose: forecast of energy consumption for the near future (analyse week) based on production schedule

- Implementation: simulation library to follow a 2-layer architecture
 - Clients in each energy-enabled component to track energy-relevant states of the equipment
 - Central component to collect and aggregate values to KPIs

- Integration in Optimised System:
 - Configuration of energy consumption of equipment and parameters (e.g., cost rates) via the optimised shell
 - Results: KPIs of energy consumption, cost and CO2 footprint returned to the MoM
Energy management in the simulation model

- Configuration of simulation components
- Simulation execution
- Export of Energy KPIs

Energy KPIs after a simulation run (aggregated and detailed)

Purpose: enforce an upper energy limit during simulation

Approach:
- Energy as a secondary Production Resource
- Grouping of resources to consumption groups
- Different budgets for different consumption groups and periods of the day (e.g. low budget during red band period)
- Energy-enabled components request their required energy from the overall budget
- Operations potentially have to wait until enough energy is available

Integration in Optimised System:
- Energy Limit during red band configurable in the shell
- Effects implicitly contained in energy KPIs and processing times
Energy management in the simulation model

Exemplary Simulated Weekly Energy Consumption (in kW, red-band periods marked)

- No limit:
- Low limit during red band:

Impact on production process?
- Throughput
- Utilisation
- Adherence to schedule

Important findings and conclusions

Essential achievements:
- Functioning pilot of a cloud-based digital twin of a production system driven by live production data
- Stable and reliable communication between different components of the tool box
- Detailed forecast of energy consumption and evaluation of the impact of energy management measures

Biggest challenges:
- Error-free and consistent data
- Data errors lead to wrong simulation results which cannot be detected on the first sight
- Main reason: manual operations
- Provide all required data automatically
- Keep the model updated
Thank you for your attention!

Dirk Wortmann
SimPlan AG
Hanau, Braunschweig, Dresden, Holzgerlingen, München, Regensburg
Sophie-Scholl-Platz 6
63452 Hanau, GERMANY
Phone +49 6181 40296-15
Fax +49 6181 40296-19
Email dirk.wortmann@SimPlan.de
Web www.SimPlan.de